Читаем Большая Советская Энциклопедия (КА) полностью

  Гидродинамическая кавитация. Поскольку в реальной жидкости всегда присутствуют мельчайшие пузырьки газа или пара, то, двигаясь с потоком и попадая в область давления р < ркр , они теряют устойчивость и приобретают способность к неограниченному росту (рис. 1 ). После перехода в зону повышенного давления и исчерпания кинетической энергии расширяющейся жидкости рост пузырька прекращается и он начинает сокращаться. Если пузырёк содержит достаточно много газа, то по достижении им минимального радиуса он восстанавливается и совершает нескольких циклов затухающих колебаний, а если газа мало, то пузырёк захлопывается полностью в первом периоде жизни. Т. о., вблизи обтекаемого тела (например, в трубе с местным сужением, рис. 2 ) создаётся довольно четко ограниченная «кавитационная зона», заполненная движущимися пузырьками.

  Сокращение кавитационного пузырька происходит с большой скоростью и сопровождается звуковым импульсом (своего рода гидравлическим ударом ) тем более сильным, чем меньше газа содержит пузырёк. Если степень развития К. такова, что в случайные моменты времени возникает и захлопывается множество пузырьков, то явление сопровождается сильным шумом со сплошным спектром от нескольких сотен гц до сотен и тысяч

кгц. Если кавитационная каверна замыкается вблизи от обтекаемого тела, то многократно повторяющиеся удары приводят к разрушению (к так называемой кавитационной эрозии) поверхности обтекаемого тела (лопастей гидротурбин, гребных винтов кораблей и др. гидротехнических устройств, рис. 3 и
4 ).

  Если бы жидкость была идеально однородной, а поверхность твёрдого тела, с которым она граничит, идеально смачиваемой, то разрыв происходил бы при давлении, значительно более низком, чем давление насыщенного пара жидкости. Прочность на разрыв воды, вычисленная при учёте тепловых флуктуаций, равна 150 Мн/м2 (1500 кг/см2 ). Реальные жидкости менее прочны. Максимальное растяжение тщательно очищенной воды, достигнутое при растяжении воды при 10 °С, составляет 28 Мн/м2

(280 кг/см2 ). Обычно же разрыв возникает при давлениях, лишь немного меньших давления насыщенного пара. Низкая прочность реальных жидкостей связана с наличием в них так называемых кавитационных зародышей: плохо смачиваемых участков твёрдого тела, твёрдых частиц с трещинами, заполненными газом, микроскопических газовых пузырьков, предохраняемых от растворения мономолекулярными органическими оболочками, ионных образований, возникающих под действием космических лучей.

  При данной форме обтекаемого тела К. возникает при некотором, вполне определённом для данной точки потока, значении безразмерного параметра

  где р — гидростатическое давление набегающего потока, рн — давление насыщенного пара, r — плотность жидкости, u

¥ скорость жидкости на достаточном отдалении от тела. Этот параметр называют «числом кавитации», служит одним из критериев подобия при моделировании гидродинамических течений. Увеличение скорости потока после начала К. вызывает быстрое возрастание числа кавитационных пузырьков, вслед за чем происходит их объединение в общую кавитационную каверну, затем течение переходит в струйное (см. Струя ). При этом течение сохраняет нестационарный характер только в области замыкания каверны. Особенно быстро струйное течение организуется в случае плохо обтекаемых тел.

  Если внутрь каверны, через тело, около которого возникает К., подвести атмосферный воздух или иной газ, то размеры каверны увеличиваются. При этом установится течение, которое будет соответствовать числу кавитации, образованному уже не по насыщающему давлению водяного пара рн , а по давлению газа внутри каверны pk , т.

е. . Всплывание такой кавитационной каверны будет определяться т. н. числом Фруда , где g — ускорение силы тяжести, a d — некоторый характерный линейный размер. Так как pk может быть много больше рн , то в таких условиях возможно при малых скоростях набегающего потока получать течения, соответствующие очень низким значениям c, т. е. глубоким степеням развития К. Так, при движении тела в воде со скоростью 6—10 м/сек можно получить его обтекание, соответствующее скоростям до 100 м/сек. Кавитационные течения, получающиеся в результате подвода газа внутрь каверны, называют искусственной К.

  Гидродинамическая К. может сопровождаться рядом физико-химических эффектов, например искрообразованием и люминесценцией. В ряде работ обнаружено влияние электрического тока и магнитного поля на К., возникающую при обтекании цилиндра в гидродинамической трубе.

Перейти на страницу:

Похожие книги

100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

Научная литература / Энциклопедии / Прочая научная литература / Образование и наука / История
100 великих пиратов
100 великих пиратов

Фрэнсис Дрейк, Генри Морган, Жан Бар, Питер Хейн, Пьер Лемуан д'Ибервиль, Пол Джонс, Томас Кавендиш, Оливер ван Ноорт, Уильям Дампир, Вудс Роджерс, Эдвард Ингленд, Бартоломью Робертс, Эсташ, граф Камберленд, шевалье де Фонтенэ, Джордж Ансон…Очередная книга серии знакомит читателей с самыми известными пиратами, корсарами и флибустьерами, чьи похождения на просторах «семи морей» оставили заметный след в мировой истории. В книге рассказывается не только об отпетых негодях и висельниках, но и о бесстрашных «морских партизанах», ставших прославленными флотоводцами и даже национальными героями Франции, Британии, США и Канады. Имена некоторых из них хорошо известны любителям приключенческой литературы.

Виктор Кимович Губарев

Приключения / История / Путешествия и география / Энциклопедии / Словари и Энциклопедии