Читаем Большая Советская Энциклопедия (ОП) полностью

  Делению О. на остенсивные и вербальные, реальные и номинальные в современной логике соответствует различение т. н. семантических и синтаксических О.: в первых Dfd и Dfn представляют собой языковые выражения различных уровней абстракции (значение термина определяется через свойства предметов), во вторых Dfd и Dfn принадлежат одному семантическому уровню (значение выражения определяется через значения др. выражений). К синтаксическим О., играющим важную роль в математическом логике и её приложениях к основаниям математики и построению искусственных алгоритмических языков для программирования на электронно-вычислительных машинах, предъявляются требования эффективности отыскания (построения) Dfd и различения Dfd от объектов, не удовлетворяющих данному О. Эти требования весьма «созвучны» важнейшему для математического естествознания критерию конструктивности, измеримости введённой данным О. величины. Явные реальные О., в которых Dfd вводится описанием способа его построения, образования, изготовления, достижения и т.п., принято называть генетическими. В приложениях к физике и др. естественным наукам эти требования реализуются посредством использования т. н. операционных О., т. е. О. физических величин через описание операций, посредством которых они измеряются, и О. свойств предметов через описание реакций этих предметов на определённые экспериментальные воздействия. Соответственно таковы, например, О. длины предмета через результаты измерения и О. понятия «щелочной раствор» фразой «щелочным называется раствор, при погружении в который лакмусовая бумага синеет».

  Генетические О. в дедуктивных науках реализуются в виде индуктивных и рекурсивных О. Индуктивное О. (и. о.) какой-либо функции или предиката состоит из т. н. прямых пунктов, указывающих значения определяемой функции или предиката для объектов из области её (его) определения, и косвенного пункта, согласно которому никакие объекты, не подпадающие под действие прямых пунктов данного О., не удовлетворяют ему. Различают фундаментальные и. о. некоторых предметных областей и нефундаментальные и. о., выделяющие те или иные подмножества из ранее определённых областей; так, и. о. натурального числа (или формулы исчисления высказываний; см.

Логика , Логика высказываний ) фундаментально, а О. чётного числа (соответственно теоремы исчисления высказываний) нефундаментально. И. о. обоих видов, порождающие определяемые ими объекты в некотором порядке, оправдывают применение к объектам доказательств по математической индукции
. Особенно важны случаи, когда этот порядок порождения однозначен; такие и. о., имеющие форму системы равенств или эквивалентностей (часть которых суть явные О. некоторых «начальных» значений определяемой функции или предиката, а другие описывают способы получения новых значений из уже определённых с помощью различных подстановок и «схем рекурсии» — см. Рекурсивные функции ), называются рекурсивными О. (р. о.). Р. о. в известном смысле наилучшим образом реализуют требования эффективности О., столь важные в общефилософском и практических отношениях.

  К О. всех видов (в т. ч. рассмотренных выше) предъявляется ряд общих требований (принципов) О., нарушение которых может обесценить предложения, формально имеющие форму О. Правило переводимости (или элиминируемости), состоящее в требовании равнообъёмности Dfd и Dfn реальных О., предусматривает возможность взаимной замены Dfd и Dfn явных номинальных О. Правило однозначности (или определённости) — это естественное требование единственности Dfd для каждого Dfn (но, конечно, не наоборот: гарантируя отсутствие омонимии в пределах данной теории, правило это вовсе не запрещает

синонимии ; не говоря уже о том, что любое явное О. порождает синонимичную пару Dfd Dfn, для одного и того же понятия или термина возможны различные О., сравнение которых часто бывает весьма плодотворным). Наконец, правило отсутствия порочного круга: Dfn О. не должен зависеть от Dfd (см. Круг в доказательстве , Круг в определении
). Выполнение этого столь естественного условия (представляется очевидным, что при его нарушении О. «ничего не определяет») связано с серьёзными трудностями, тем более, что, например, в «точнейшей из наук» — математике — оказывается чрезвычайно неудобным полностью отказаться от нарушающих этот принцип т. н. непредикативных определений (см. также Парадокс , Типов теория ). Следует отметить, что индуктивные и рекурсивные О., в формулировках которых Dfn содержит упоминание о Dfd, на самом деле всё же удовлетворяют этому требованию: анализ таких О. показывает, что на каждом шаге порождения определяемых ими объектов Dfd используется не целиком, а лишь в объёме предварительно построенной (на предыдущих шагах) своей части.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина
Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Первый том уникального по своему охвату издания посвящен астрономии, астрофизике, географии, биологии и медицине.

Анатолий Павлович Кондрашов

Энциклопедии