Хорошо описывая распространение света в материальных средах, волновая О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов (фотоэффекта
, фотохимических превращений молекул, закономерностей спектров оптических
и пр.) и общие термодинамические соображения о взаимодействии электромагнитного поля с веществом привели к выводу, что элементарная система (атом, молекула) может отдавать энергию электромагнитному полю (или, напротив, получать её от него) лишь дискретными порциями (квантами), пропорциональными частоте излучения n (см. Излучение
). Поэтому световому электромагнитному необходимо сопоставить поток квантов света — фотонов
, распространяющихся в вакууме со скоростью света
с
=
2,99·109 см
/сек
. Фотоны обладают энергией h
n, импульсом с абсолютной величиной h
n/c
и массой h
n/c2
(их масса покоя равна нулю, см. Масса
), а также спином
h
/2p; здесь h
= 6,65·1027эрг
/сек
— Планка постоянная
. В простейшем случае энергия, теряемая или приобретаемая изолированной квантовой системой при взаимодействии с оптическим излучением, равна энергии фотона, а в более сложном — сумме или разности энергий нескольких фотонов (см. Многофотонные процессы
). Явления, в которых при взаимодействии света и вещества существенны квантовые свойства элементарных систем, рассматриваются квантовой О. методами, развитыми в квантовой механике
иквантовой электродинамике
, а оптические явления, не связанные с изменением собственных состояний квантовых систем (например, давление света
, Доплера эффект
), могут трактоваться в рамках как классических волновых, так и фотонных представлений. Двойственность природы света (наличие одновременно характерных черт, присущих и волнам, и частицам) — частное проявление корпускулярно-волнового дуализма
, свойственного, согласно квантовой теории, всем объектам микромира (например, электронам, протонам, атомам). Исторически концепция корпускулярно-волнового дуализма, впервые сформулированная именно для оптического излучения, окончательно утвердилась после обнаружения волновых свойств у материальных частиц (см. Дифракция частиц
) и лишь некоторое время спустя была экспериментально подтверждена для соседнего с оптическим диапазона электромагнитного излучения — радиоизлучения (квантовая электроника
, квантовая радиофизика). Открытие квантовых явлений в радиодиапазоне во многом стёрло резкую границу между радиофизикой и О. Сначала в радиофизике, а затем в физической О. сформировалось новое направление, связанное с генерированием вынужденного излучения
и созданием квантовых усилителей
и квантовых генераторов
излучения (мазеров
и лазеров). В отличие от неупорядоченного светового поля обычных (тепловых и люминесцентных) источников, излучение лазеров в результате управления полем актами испускания входящих в них элементарных систем характеризуется упорядоченностью (когерентностью
). Оно отличается высокой монохроматичностью (Dn/n ~ 10–13
, см. Монохроматический свет
), предельно малой (вплоть до дифракционной) расходимостью пучка и при фокусировке позволяет получать недостижимые ни для каких других источников плотности излучения (~1018вт
·см –2
·стер –1
). Появление лазеров стимулировало пересмотр и развитие традиционных и возникновение новых направлений физической О. Большую роль стали играть исследования статистики излучения (статистическая О.), были открыты новые нелинейные и нестационарные явления, получили развитие методы создания узконаправленных когерентных пучков света и управления ими (когерентная О.) и т.д. Особую важность приобрело изучение круга явлений, связанных с воздействием света на вещество (до появления лазеров наибольшее внимание привлекало воздействие вещества на свет). Развитие лазерной техники привело к новому подходу при создании оптических элементов и систем и, в частности, потребовало разработки новых оптических материалов, которые пропускают интенсивные световые потоки, сами не повреждаясь (силовая О.).