Читаем Большая Советская Энциклопедия (РЕ) полностью

  Уравнение у = u(х), в котором х играет роль «независимой» переменной, называется уравнением регрессии, а соответствующий график — линией регрессии величины Y по X. Точность, с которой уравнение Р. Y по Х отражает изменение Y в среднем при изменении х, измеряется условной дисперсией величины Y, вычисленной для каждого значения Х = х:

D(Y êх) = s2(x).

  Если s2(х) = 0 при всех значениях х, то можно с достоверностью утверждать, что Y и Х связаны строгой функциональной зависимостью Y = u(X). Если s2(х) = 0 при всех значениях х и u(х) не зависит от х, то говорят, что Р. Y по Х отсутствует. Аналогичным образом определяется Р. Х по Y и в частности, уравнение Р. х = u(у), = Е(ХïY

= у). Функции у = u(х) и х = u(у), вообще говоря, не являются взаимно обратными.

  Линии Р. обладают следующим замечательным свойством: среди всех действительных функций f (х) минимум математического ожидания Е[Yf(X)]2 достигается для функции f(x) = u(х), т. е. Р. Y по Х даёт наилучшее, в указанном смысле, представление величины Y по величине X. Это свойство используется для прогноза Y по X: если значение Y непосредственно не наблюдается и эксперимент позволяет регистрировать лишь компоненту Х вектора (X, Y), то в качестве прогнозируемого значения Y используют величину u (X).

  Наиболее простым является случай, когда Р. Y по Х линейна:

Е(Yïx) = b0 + b1x.

  Коэффициенты b0 и b1, называются коэффициентами регрессии, определяются равенствами

,

где mХ и mY математические ожидания Х и Y, и  — дисперсии Х и Y

, а r — коэффициент корреляции между Х и Y. Уравнение Р. при этом выражается формулой

  В случае, когда совместное распределение Х и Y нормально, обе линии Р. у = u(х) и х = u(у) являются прямыми.

  Если Р. Y по Х отлична от линейной, то последнее уравнение есть линейная аппроксимация истинного уравнения Р.: математическое ожидание Е[Y b0 — b1X]2 достигает минимума b0 и b1 при b0 = b0 и b1 = b1. Особенно часто встречается случай уравнения Р., выражающегося линейной комбинацией тех или иных заданных функций:

у = u(Х) = b0j0(x) + b1j1(x) + ... + bmjm(x).

  Наиболее важное значение имеет параболическая (полиномиальная) Р., при которой j0

(x) = 1 , j1(x) = x, ..., jm(x) = xm.

  Понятие Р. применимо не только к случайным величинам, но и к случайным векторам. В частности, если Y — случайная величина, а Х = (X1, ..., Xk) случайный вектор, имеющие совместное распределение вероятностей, то Р. Y по X определяется уравнением

y = u ( x1, ..., xk),

где u( x1, ..., xk) = E{YïX = x1, ... , Xk = xk}.

  Если

u ( x1, ..., xk) = b0 + b1x1

+ ... + bkxk,

то Р. называется линейной. Эта форма уравнения Р. включает в себя многие типы Р. с одной независимой переменной, в частности полиномиальная Р. Y по Х порядка k сводится к линейной Р. Y по X1, ..., Xk, если положить Xk = Xk.

  Простым примером Р. Y по Х является зависимость между Y и X, которая выражается соотношением: Y = u(X) + d, где u(x) = Е(Y IX = х), а случайные величины Х и d независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи у = u(х) между неслучайными величинами у и х.

  На практике обычно коэффициенты Р. в уравнении у = u(х) неизвестны и их оценивают по экспериментальным данным (см. Регрессионный анализ).

  Первоначально термин «Р.» был употреблен английским статистиком Ф. Гальтоном (1886) в теории наследственности в следующем специальном смысле: «возвратом к среднему состоянию» (regression to mediocrity) было названо явление, состоящее в том, что дети тех родителей, рост которых превышает среднее значение на а единиц, имеют в среднем рост, превышающий среднее значение меньше чем на а единиц.

  Лит.: Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Кендалл М. Дж., Стьюарт А., Статистические выводы и связи, пер. с англ., М., 1973.

  А. В. Прохоров.

Регрессия моря

Регре'ссия моря (от лат. regressio — обратное движение, отход), отступание моря от берегов. Происходит в результате поднятия суши, опускания дна океана или уменьшения объёма воды в океанических бассейнах (например, во время ледниковых эпох). Р. происходили многократно в различных районах Земли на протяжении всей её истории. См. также Трансгрессия.

Регрессный иск

Перейти на страницу:

Похожие книги

100 великих кумиров XX века
100 великих кумиров XX века

Во все времена и у всех народов были свои кумиры, которых обожали тысячи, а порой и миллионы людей. Перед ними преклонялись, стремились быть похожими на них, изучали биографии и жадно ловили все слухи и известия о знаменитостях.Научно-техническая революция XX века серьёзно повлияла на формирование вкусов и предпочтений широкой публики. С увеличением тиражей газет и журналов, появлением кино, радио, телевидения, Интернета любая информация стала доходить до людей гораздо быстрее и в большем объёме; выросли и возможности манипулирования общественным сознанием.Книга о ста великих кумирах XX века — это не только и не столько сборник занимательных биографических новелл. Это прежде всего рассказы о том, как были «сотворены» кумиры новейшего времени, почему их жизнь привлекала пристальное внимание современников. Подбор персоналий для данной книги отражает любопытную тенденцию: кумирами народов всё чаще становятся не монархи, политики и полководцы, а спортсмены, путешественники, люди искусства и шоу-бизнеса, известные модельеры, иногда писатели и учёные.

Игорь Анатольевич Мусский

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии