Марксизм, не отрицая прогрессивности капитализма и буржуазной С. для определённой исторической эпохи, научно доказал путём анализа противоречий капиталистического способа производства неизбежность гибели частнособственнической системы и перехода к новому, социалистическому обществу, к новой экономической структуре производства и соответствующей ей общественной форме С. (см. Социалистическая собственность
).
Лит.:
Маркс К., Формы, предшествующие капиталистическому производству, Маркс К. и Энгельс Ф., Соч., 2 изд., т, 46, ч. 1; его же, Капитал, т. 1, гл. 24, т. 3, гл. 31, 47, там же, т. 23, т. 25, ч. 1—2; Энгельс Ф., Происхождение семьи, частной собственности и государства, там же, т. 21; Ленин В. И., Развитие капитализма в России, Полное собрание соч., 5 изд., т.3; его же, Империализм, как высшая стадия капитализма, там же, т. 27; Материалы XXIV съезда КПСС, М., 1971; Колганов М. В., Собственность в социалистическом обществе, М., 1953; Тюльпанов С. И., Очерки политической экономии. (Развивающиеся страны), М., 1969; Столяров П., Вопросы теории и исторического развития форм собственности в работах К. Маркса, К., 1970; Политическая экономия современного монополистич. капитализма, 2 изд., т. 1, М., 1975, гл. 16; Шкредов В., Метод исследования собственности в «Капитале» К. Маркса, М., 1973; Государственная собственность и антимонополистическая борьба в странах развитого капитализма, М., 1973. В. П. Шкредов.
Собственные векторы
Со'бственные ве'кторы
линейного преобразования, векторы, которые при этом преобразовании не меняют своего направления, а только умножаются на скаляр. Например, С. в. преобразования, составленного из вращении вокруг некоторой оси и сжатия к перпендикулярной ей плоскости, служат векторы, направленные по этой оси. Координаты х1, х2,..., xn С. в. линейного преобразования n-мерного пространства с матрицей преобразования ||aik|| удовлетворяют системе однородных линейных уравнений , , где l — одно из собственных значений этой матрицы. Если матрица преобразования самосопряжённая (см. Самосопряжённая матрица), то С. в. взаимно перпендикулярны. При самосопряжённом преобразовании сфера переходит в эллипсоид, главными осями которого являются С. в. преобразования. Собственные движения звёзд
Со'бственные движе'ния звёзд,
видимые угловые перемещения звёзд по небесной сфере за год. С. д. з. являются следствием как действительных (т. н. пекулярных) перемещений звёзд в пространстве, так и кажущихся (т. н. параллактических) смещений, представляющих собой отражение движения Солнечной системы (вместе с Землёй) в пространстве. Периодическое изменение положения звёзд с годовым периодом (годичный параллакс) вследствие движения Земли вокруг Солнца в С. д. з. не входит. Знание С. д. з. важно при построении фундаментальных систем сферических координат (фундаментальных звёздных каталогов), опирающихся на точные положения звёзд, а также при изучении кинематики звёздных систем (совместно с лучевыми скоростями и параллаксами). Обычно С. д. з. не превышают по величине сотых долей угловой секунды, редко достигая десятых долей и ещё реже целых секунд дуги. Наибольшее собственное движение — 10",27 имеет звезда Барнарда 9,7 звёздной величины, находящаяся в созвездии Змееносца. В древности звёзды считались неподвижно укрепленными на небосводе. Но уже китайский астроном И. Син (683—727 н. э.), сравнивая полученные взаиморасположения звёзд в созвездии Стрельца с наблюдениями предшественников, высказал предположение об изменении угловых расстояний между звёздами со временем. В 16 в. Дж. Бруно
утверждал, что, как и все тела во Вселенной, звёзды участвуют в непрерывном движении и изменении. Впервые С. д. з. обнаружил Э. Галлей (1718) у трёх ярких звёзд: Альдебарана, Сириуса и Арктура, из сопоставления современных ему координат с координатами в Альмагесте Птолемея. В 1742 Дж. Брадлей высказал предположение, что С. д. з. представляют собой отражение движения Солнца в пространстве. В конце 18 — начале 19 вв. начали появляться каталоги С. д. з. В последующие годы было показано, что пекулярные движения звёзд, а следовательно и С. д. з., следует считать беспорядочными с известной осторожностью, в движении звёзд в пространстве имеются общие закономерности (движение звёзд скоплений, галактическое вращение).