Читаем Большая Советская Энциклопедия (ЦВ) полностью

  Когда ЦК какого-либо цвета откладывают по 3 взаимно перпендикулярным координатным осям, этот цвет геометрически представляется точкой в трёхмерном, т. н. цветовом, пространстве или же

вектором , начало которого совпадает с началом координат, а конец — с упомянутой точкой цвета. Точечная и векторная геометрическая трактовки цвета равноценны и обе используются при описании цветов. Точки, представляющие все реальные цвета, заполняют некоторую область цветового пространства. Но математически все точки пространства равноправны, поэтому можно условно считать, что и точки вне области реальных цветов представляют некоторые цвета. Такое расширение толкования цвета как математического объекта приводит к понятию т. н. нереальных цветов, которые невозможно как-либо реализовать практически. Тем не менее с этими цветами можно производить математические операции так же, как и с реальными цветами, что оказывается чрезвычайно удобным в колориметрии. Соотношение между основными цветами в ЦКС выбирают так, что их количества, дающие в смеси некоторый исходный цвет (чаще всего белый), принимают равными 1.

  Своего рода «качество» цвета, не зависящее от абсолютной величины цветового вектора и называется его цветностью, геометрически удобно характеризовать в двумерном пространстве — на «единичной» плоскости цветового пространства, проходящей через 3 единичные точки координатных осей (осей основных цветов). Линии пересечения единичной плоскости с координатными плоскостями образуют на ней равносторонний треугольник, в вершинах которого находятся единичные значения основных цветов. Этот треугольник часто называют треугольником Максвелла. Цветность какого-либо цвета определяется не 3 его ЦК, а соотношением между ними, т. е. положением в цветовом пространстве прямой, проведённой из начала координат через точку данного цвета. Другими словами, цветность определяется только направлением, а не абсолютной величиной цветового вектора, и, следовательно, её можно характеризовать положением точки пересечения этого вектора (либо указанной прямой) с единичной плоскостью. Вместо треугольника Максвелла часто используют цветовой треугольник более удобной формы — прямоугольный и равнобедренный. Положение точки цветности в нём определяется двумя координатами цветности, каждая из которых равна частному от деления одной из ЦК на сумму всех 3 ЦК. Двух координат цветности достаточно, т.к. по определению сумма её 3 координат равна 1. Точка цветности исходного (опорного) цвета, для которой 3 цветовые координаты равны между собой (каждая равна 1

/3 ), находится в центре тяжести цветового треугольника.

  Представление цвета с помощью ЦКС должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех ЦКС лежит т. н. физиологическая ЦКС. Эта система определяется 3 функциями спектральной чувствительности 3 различных видов приёмников света

(т. н. колбочек), которые имеются в сетчатке глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих 3 приёмников на излучение считаются ЦК в физиологической ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их определяют косвенным путём и не используют непосредственно в качестве основы построения колориметрических систем.

Перейти на страницу:

Похожие книги

100 великих пиратов
100 великих пиратов

Фрэнсис Дрейк, Генри Морган, Жан Бар, Питер Хейн, Пьер Лемуан д'Ибервиль, Пол Джонс, Томас Кавендиш, Оливер ван Ноорт, Уильям Дампир, Вудс Роджерс, Эдвард Ингленд, Бартоломью Робертс, Эсташ, граф Камберленд, шевалье де Фонтенэ, Джордж Ансон…Очередная книга серии знакомит читателей с самыми известными пиратами, корсарами и флибустьерами, чьи похождения на просторах «семи морей» оставили заметный след в мировой истории. В книге рассказывается не только об отпетых негодях и висельниках, но и о бесстрашных «морских партизанах», ставших прославленными флотоводцами и даже национальными героями Франции, Британии, США и Канады. Имена некоторых из них хорошо известны любителям приключенческой литературы.

Виктор Кимович Губарев

Приключения / История / Путешествия и география / Энциклопедии / Словари и Энциклопедии