Читаем Бозон Хиггса полностью

Неэман работал по вечерам и выходным. Он начал искать группы симметрии, которые могли бы вместить в себя известные частицы, и нашел пять кандидатов, в том числе SU(3). Неэмана увлекли большие перспективы, которые предоставляла группа симметрии, изображаемая в виде звезды Давида, и в конце концов он остановился на SU(3). В июле 1961 года он опубликовал собственную версию восьмеричного пути.

Сначала Салам был настроен скептически, но, когда на его столе оказался черновик статьи Гелл-Манна, он сразу перестал сомневаться. Хотя у Гелл-Манна была небольшая фора, он уговорил Неэмана печататься (на самом деле статья Неэмана первой вышла в физическом журнале). Но он не испытывал разочарования. Напротив, он чувствовал приятное возбуждение, оказавшись в такой хорошей компании.

Неэман и Гелл-Манн посетили конференцию по физике элементарных частиц в июне 1962 года, которую проводила Европейская организация по ядерным исследованиям (ЦЕРН) в Женеве. Они оба внимательно выслушали доклады о новых, недавно открытых частицах, триплете частиц, которые позднее стали называться Σ* (сигма), со странностью –1, и дублете частиц Ξ* (кси) со странностью –2.

Неэман сразу же увидел, что эти частицы относятся к другому представлению SU(3), состоящему из десяти измерений. Ему понадобился один миг, чтобы понять, что из десяти частиц представления девять уже найдены. Чтобы завершить схему, нужна была отрицательно заряженная частица со странностью –3.

Он поднял руку, прося слова, но Гелл-Манн сделал то же умозаключение и сидел ближе к переднему ряду. Поэтому именно Гелл-Манн встал и предсказал существование частицы, которую позднее назвали омегой. Она была открыта в январе 1964 года.

Схема в конце концов сложилась, но как насчет лежащего в ее основе объяснения?

4

Верные идеи для неверных задач

Глава, в которой Марри Гелл-Манн и Джордж Цвейг изобретают кварки, а Стивен Вайнберг и Абдус Салам используют механизм Хиггса для сообщения массы W– и Z-частицам (наконец-то!)


Ёитиро Намбу, американский физик японского происхождения, был глубоко обеспокоен.

Намбу изучал физику в Токийском имперском университете и закончил его в 1942 году. Физика элементарных частиц привлекла его благодаря славе Ёсио Нисины, Синъитиро Томонаги и Хидэки Юкавы, основателей японской физики частиц. Но в Токио не было крупного физика, работавшего в этой области, поэтому он стал заниматься физикой твердого тела.

В 1949 году Намбу переехал из Токио в Осаку, чтобы занять место профессора в тамошнем университете. Три года спустя его пригласили в Институт перспективных исследований в Принстоне. Он перебрался в Чикагский университет в 1954-м и четыре года спустя стал там профессором.

В 1956 году он посетил семинар, который проводил Джон Шриффер по новой теории сверхпроводимости, разработанной им вместе с Джоном Бардином и Леоном Купером. Это было элегантное применение квантовой теории для объяснения, почему некоторые кристаллические материалы при охлаждении ниже критической температуры теряют электрическое сопротивление и становятся сверхпроводниками.

Одноименные заряды отталкиваются. Однако электроны в сверхпроводниках испытывают слабое взаимное притяжение. Дело в том, что свободный электрон, проходящий близко от положительно заряженного иона в кристаллической решетке, слегка притягивает ион, который отклоняется от своего положения, искажая решетку. Электрон движется дальше, но искаженная решетка продолжает вибрировать взад-вперед. Эта вибрация производит небольшой дополнительный положительный заряд, который притягивает второй электрон.

В итоге суть этого взаимодействия в том, что пара электронов (называемая куперовской парой) с противоположным спином и импульсом совместно движется по решетке и вибрация решетки содействует их движению. Если помните, электроны являются фермионами и, как таковые, не могут занимать одно и то же квантовое состояние в соответствии с принципом Паули. Куперовские пары, напротив, ведут себя как бозоны, которые не подчиняются этому ограничению. Количество пар, которые могут занимать квантовое состояние, неограниченно, и при низких температурах они могут «конденсироваться», скапливаясь в одном состоянии и приобретая макроскопические размеры[51]. Куперовские пары в этом состоянии не испытывают сопротивления, двигаясь по решетке, и в результате возникает сверхпроводимость.

Намбу беспокоило, что в этой теории, очевидно, не соблюдалась калибровочная инвариантность электромагнитного поля. Иными словами, в ней, по всей видимости, не сохранялся электрический заряд.

Намбу взялся за эту проблему, и в этом ему помогла подготовка в области физики твердого тела. Он понял, что теория сверхпроводимости Бардина, Купера, Шриффера (БКШ) – это пример спонтанного нарушения симметрии применительно к калибровочному полю электромагнетизма.

Перейти на страницу:

Похожие книги

Педагогика угнетенных
Педагогика угнетенных

«Педагогика угнетенных» Паулу Фрейре (1921–1997) – это книга, которая в свое время произвела революцию в западной системе образования, положив начало направлению «критическая педагогика» и став одним из основополагающих текстов этого направления. Детально анализируя принципы марксистской классовой борьбы, Фрейре предлагает свой взгляд на отношения в обществе со значительным социальным расслоением.«"Педагогика угнетенных" была написана в основном не с целью предложить новую методологию (что противоречило бы представленной автором критике стереотипных моделей образования), а с целью простимулировать развитие освободительного образовательного процесса, который бросает ученикам вызов, призывает их к действию и требует, чтобы при помощи грамотности и критического мышления они учились изменять мир, в котором живут, вдумчиво и критически его оценивая; чтобы они могли выявлять разногласия и противоречия, присущие отношениям между угнетателями и угнетенными, и противостоять им. В сущности, Фрейре предлагает читателю идеологическую карту революционных изменений…». (Дональдо Мачедо)

Паулу Фрейре

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Философия / Образование и наука