Как и с их производством в атомных ускорителях, такие мельчайшие черные дыры не будут представлять абсолютно никакой опасности для экспериментаторов или мира в целом. После их создания они быстро распадутся, послав вовне каскад других, более обыкновенных частиц. Фактически, микроскопические черные дыры будут настолько короткоживущими, что экспериментаторы не смогут найти их непосредственно; напротив, они будут искать доказательство черных дыр через детальные исследования результирующих частиц, дождем падающих на их детекторы. Самый чувствительный из детекторов космических лучей мира, обсерватория Пьера Аугера, – вместе с наблюдающей областью размером порядка Род Айленда, – строится в настоящее время в обширной вытянутой местности в западной Аргентине. Шапере и Фенг оценивают, что если все внешние размерности имеют величину порядка 10–14
метра, тогда после года сбора данных детектор Аугера увидит характеристические обломки частиц от примерно дюжины мельчайших черных дыр, произведенных в верхней атмосфере. Если такие отметки черных дыр не будут найдены, эксперимент даст заключение, что внешние размерности еще меньше. Поиск остатков черных дыр, произведенных столкновениями космических лучей, определенно является рискованной ставкой, но успех открыл бы первое экспериментальное окно к дополнительным размерностям, черным дырам, теории струн и квантовой гравитации.Вне производства черных дыр имеется другой, основанный на ускорителях путь, на котором исследователи могут искать внешние размерности в течение следующих десяти лет. Идея заключается в усложненном варианте трактовки "пространства-между-диванными-подушками" для потерянной монеты, выпавшей из вашего кармана.
Центральный принцип физики есть сохранение энергии. Энергия может проявлять себя в различных формах – кинетическая энергия движения мяча, когда он улетает от бейсбольной биты, гравитационная потенциальная энергия, когда мяч взлетел вверх, энергия звука и тепла, когда мяч падает на грунт и возбуждает все виды колебательного движения, энергия массы, которая замкнута внутри самого мяча, и так далее, – но когда все носители энергии оценены, количество, с которым вы закончите всегда равно количеству, с которым вы начали.[7]
На сегодняшний день нет эксперимента, нарушающего этот закон совершенного энергетического баланса.Но в зависимости от точного размера гипотетических внешних измерений эксперименты с высокими энергиями, которые будут проводиться с вновь усовершенствованным оборудованием в Фермилабе и на Большом Адронном Коллайдере (LHC) могут обнаружить процессы, которые покажут нарушение сохранения энергии: энергия в конце столкновения может быть меньше, чем энергия в начале. Причина в том, что, почти похоже на потерянные монетки, энергия (уносимая гравитонами) может просачиваться в трещину – мельчайшее дополнительное пространство, – обеспеченную дополнительными измерениями и потому нечаянно упущенную при вычислениях оцениваемой энергии. Возможность такого "сигнала потери энергии" обеспечивает еще один способ для установления, что ткань космоса намного сложнее, чем мы можем видеть непосредственно.
Несомненно, когда речь заходит о дополнительных размерностях, я предубежден. Я работал над аспектами дополнительных размерностей более пятнадцати лет, так что они занимают особое место в моем сердце. Но, с этой верой, как описателю, мне тяжело представить открытие, которое было бы более завораживающим, чем находка доказательства измерений за пределами трех, к которым мы все привыкли. По моему мнению, в настоящее время нет другого серьезного предположения, чье подтверждение так основательно потрясет основы физики и так полно установит, что мы должны быть готовы к вопросам, относящимся к кажущимся самоочевидными элементам реальности.
Хиггс, суперсимметрия и теория струн