За истекшие 30 лет выяснилось, что моя любимая игра настолько легко поддается грубой вычислительной силе, что для победы над человеком машинам совсем не нужно иметь стратегическое мышление. Потребовались колоссальные усилия, чтобы усовершенствовать оценочную функцию Deep Blue и обучить программу дебютам, но, как это ни удручает, появившиеся через несколько лет машины с более мощными процессорами не нуждались ни в том, ни в другом. Хорошо это или плохо, шахматы оказались недостаточно глубокой игрой для того, чтобы подтолкнуть компьютерное сообщество к поиску других решений, помимо скорости, о чем многие сожалели.
В 1989 году два ведущих специалиста в области компьютерных шахмат написали эссе «Наказание за схождение с пути истинного»{31}
. Они раскритиковали методы, с помощью которых шахматные машины сумели приблизиться к гроссмейстерскому уровню. Одним из авторов был советский ученый Михаил Донской, входивший в число создателей программы «Каисса», победительницы первого чемпионата мира по шахматам среди компьютерных программ (1974). Вторым — Джонатан Шеффер, который вместе со своими коллегами из Университета Альберты в Канаде на протяжении нескольких десятилетий занимался разработкой наиболее передовых игровых машин. Помимо шахматных программ он создал сильную программу для игры в покер и программу Chinook для игры в шашки, которая участвовала в чемпионате мира и стала практически непобедимой.В своей провокационной статье, опубликованной в авторитетном компьютерном журнале, Донской и Шеффер описали, как на протяжении многих лет компьютерные шахматы все больше отдалялись от ИИ. Они считали, что главной причиной этого разрыва стал ошеломительный успех поискового алгоритма «альфа-бета». Зачем искать что-то еще, если выигрышный метод уже найден? «К сожалению, эта мощная идея появилась на слишком раннем этапе развития компьютерных шахмат», — утверждали авторы статьи. Поскольку значение имела исключительно победа любой ценой, техническая сторона дела взяла верх над наукой. Распознавание образов, развитие знаний и другие человеческие методы были отброшены, поскольку супербыстрая грубая сила обеспечивала успех.
Для многих это стало большим ударом. Шахматы были важным объектом исследований в психологии и когнитивной науке практически с момента зарождения этих дисциплин. В 1892 году Альфред Бине изучал шахматистов в рамках своего исследования «математических дарований и людей-счетчиков». Его открытия оказали большое влияние на изучение различных видов памяти и умственных способностей. А описанные им различия между врожденным талантом и приобретенными знаниями и опытом заложили основы для дальнейших исследований в этой области. «Человек может стать хорошим шахматистом, — написал он. — Но гениальным шахматистом нужно родиться»{32}
. Вместе со своим коллегой Теодором Симоном Бине разработал первый тест для определения уровня интеллекта человека. В 1946 году работу Бине продолжил голландский психолог Адриан де Грот, протестировавший множество шахматистов. Результаты его исследований показали всю важность когнитивной функции распознавания образов и в значительной степени очистили представление о процессе принятия решений от таинственного феномена человеческой интуиции.Американский специалист по информатике Джон Маккарти, придумавший в 1956 году термин «искусственный интеллект», назвал шахматы «дрозофилой ИИ»{33}
, подразумевая ту роль, которую сыграла эта крошечная плодовая мушка в бесчисленном множестве великих научных открытий и экспериментов в области биологии, особенно в генетике. Но к концу 1980-х компьютерное шахматное сообщество практически отказалось от серьезных экспериментов. В 1990 году создатель Belle Кен Томпсон открыто порекомендовал использовать игру го как более многообещающий инструмент для достижения реального прогресса в исследовании мыслительных способностей машин. В том же году в сборник «Компьютеры, шахматы и познание» был включен целый раздел под названием «Новая дрозофила для исследований ИИ?», посвященный игре го.