Читаем Человек и компьютер: Взгляд в будущее полностью

DARPA не полностью отказалось от ИИ и даже имело в бюджете небольшую «шахматную» статью. Внимательно прочитав научные публикации о машине HiTech, созданной Хансом Берлинером в Университете Карнеги — Меллона, можно увидеть, что в 1980-е этот проект частично финансировался за счет гранта DARPA. Недавно агентство предложило провести ряд конкурсов на лучший беспилотный автомобиль и другие прикладные технологии, связанные с практическим применением ИИ{41}

. Используя развитие шахматных машин как модель, DARPA объявило конкурс на лучшую разработку автономной защиты сети. В соответствии с дарвиновской теорией эволюции в компьютерных шахматах фокус на конкуренции, а не на фундаментальных исследованиях препятствовал прогрессу истинного искусственного интеллекта, но способствовал созданию все более эффективных шахматных машин. А военные всегда испытывали острый интерес к алгоритмам анализа разведданных и совершенствованию военных технологий, к чему я вернусь позже.

Грандиозные предсказания исследователей искусственного интеллекта в 1950–1960-е годы перекликались с прогнозами специалистов по компьютерным шахматам тех же лет; на самом деле зачастую это были одни и те же голоса. Но, в отличие от ученых, занимавшихся ИИ, специалисты по компьютерным шахматам вытащили золотой билет — разработали поисковый алгоритм «альфа-бета», который гарантировал стабильное улучшение. Было ли это новшество благословением или проклятием, но оно обусловило ощутимый прогресс. Те же, кто изучал универсальный ИИ, не сумели добиться столь же явного постепенного роста, который гарантировал бы им государственные гранты, инвестиции корпораций и исследовательские программы в университетах. Весна ИИ наступила только тогда, когда это движение, как и движение компьютерных шахмат, отказалось от грандиозной мечты сымитировать человеческий интеллект. Новым направлением развития стало машинное обучение, которое на протяжении многих лет не достигало больших успехов. Но в 1980-е годы появился новый решающий фактор — большие данные.

Дональд Мичи был одним из пионеров машинного обучения, еще в 1960 году применив этот метод к игре в крестики-нолики. Основная концепция заключается в том, что вы не закладываете в машину комплекс правил, которые она должна соблюдать, подобно тому как вы учите грамматические и синтаксические правила при изучении иностранного языка. Вместо того чтобы рассказывать машине о процессе, вы снабжаете ее множеством примеров этого процесса и позволяете самой выяснить правила.

И снова перевод с языка на язык служит хорошей иллюстрацией. Программа Google Translate опирается на машинное обучение и практически не знает правил тех десятков языков, с которыми работает. Компания даже не нанимает людей со знанием соответствующих языков. В систему загружаются миллионы и миллионы примеров правильного перевода, и машина, встречая что-то новое, сама определяет, какой вариант будет верным. В 1960-е годы, когда Мичи и другие пробовали применять этот подход, машины были слишком медленными, а их системы сбора и ввода данных — примитивными. Никто не смел предположить, что решение такой «человеческой» задачи, как язык, может быть делом масштаба и скорости. Создатели систем ИИ столкнулись с той же проблемой, что и первые шахматные программисты, которые, глядя на программы типа А, решили, что машины никогда не станут достаточно быстрыми для того, чтобы выйти на уровень грамотной игры с помощью грубой силы. Как сказал один из разработчиков программы Google Translate: «Когда вы переходите от десяти тысяч обучающих примеров к десяти миллиардам, это начинает работать. Данные решают всё»{42}

.

В начале 1980-х Мичи со своими коллегами написал основанную на данных экспериментальную шахматную программу машинного обучения и получил весьма занятные результаты. Программисты «скормили» машине сотни тысяч позиций из гроссмейстерских партий в надежде на то, что машина сама разберется, что к чему. Вначале показалось, что это сработало. Ее оценка позиций была более точной, чем у обычных программ. Проблемы начались во время партии. Программа разыграла дебют, начала атаку — и сразу же пожертвовала ферзя! Потеряв ферзя за бесценок, она проиграла партию в несколько ходов. Почему она это сделала? Дело вот в чем: когда ферзя жертвует гроссмейстер, за этим всегда следует блестящий и решительный удар, и машина, учившаяся на гроссмейстерских партиях, решила, что жертва ферзя — ключ к победе!{43}

Перейти на страницу:

Похожие книги

Ведьмак. История франшизы. От фэнтези до культовой игровой саги
Ведьмак. История франшизы. От фэнтези до культовой игровой саги

С момента выхода первой части на ПК серия игр «Ведьмак» стала настоящим международным явлением. По мнению многих игроков, CD Projekt RED дерзко потеснила более авторитетные студии вроде BioWare или Obsidian Entertainment. Да, «Ведьмак» совершил невозможное: эстетика, лор, саундтрек и отсылки к восточноевропейскому фольклору нашли большой отклик в сердцах даже западных игроков, а Геральт из Ривии приобрел невероятную популярность по всему миру.Эта книга – история триумфа CD Projekt и «Ведьмака», основанная на статьях, документах и интервью, некоторые из которых существуют только на польском языке, а часть и вовсе не публиковалась ранее.В формате PDF A4 сохранен издательский макет книги.

Рафаэль Люка

Хобби и ремесла / Зарубежная компьютерная, околокомпьютерная литература / Зарубежная прикладная литература / Дом и досуг
Старший брат следит за тобой. Как защитить себя в цифровом мире
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами. Существуют и государственные проекты наподобие «Умного города», подразумевающие повсеместное внедрение видеокамер и технологий распознавания лиц.Все это не значит, что нужно стремиться к цифровому затворничеству и панически избегать гаджетов, но необходимо изучить и соблюдать элементарные правила безопасности. Михаил Райтман в своей книге рассказывает, как максимально снизить вероятность утечки персональных данных, осложнив задачу потенциальным злоумышленникам.

Михаил Анатольевич Райтман

Зарубежная компьютерная, околокомпьютерная литература