«Умные» склады — это только начало. В настоящее время технологии искусственного интеллекта позволяют сделать гораздо «умнее» всю цепочку поставок, подобно тому как совершенствуются производственные цеха. Разумеется, компании стремятся избежать любых сбоев в работе логистических цепочек, которые могут быть вызваны самыми разными причинами: качество услуг, предоставляемых поставщиком, политическая нестабильность в регионе, забастовки, неблагоприятные погодные условия и т. п. С этой целью компании собирают и анализируют с помощью искусственного интеллекта данные о поставщиках, помогают составить более полное представление о факторах, влияющих на цепочку поставок, предвосхитить сценарии развития событий и т. д. Компании также хотят свести к минимуму и факторы неопределенности, связанные с последующими этапами реализации. В данном случае искусственный интеллект помогает компаниям оптимизировать прогнозирование спроса, точнее планировать его и лучше контролировать остатки на складах. В результате цепочки поставок становятся более гибкими, способными предусмотреть динамику бизнес-среды и адаптироваться к ней.
Рассмотрим всего один этап работы: прогнозирование спроса. Правильное прогнозирование спроса — болевая точка многих компаний, однако благодаря нейронным сетям, алгоритмам машинного обучения и другим системам искусственного интеллекта можно сгладить остроту этой проблемы. Например, один из лидеров по производству здорового питания активно задействовал возможности машинного обучения для анализа колебаний спроса и трендов при продвижении товаров. Анализ позволил построить надежную модель, способную оценить ожидаемые результаты от стимулирования продаж. Благодаря этому удалось на 20% сократить ошибки прогнозирования и на 30% уменьшить объем нераспроданной продукции.
К подобным результатам стремится и лидер мирового рынка потребительских товаров Procter & Gamble, СЕО которого недавно заявил о намерении сократить логистические издержки на миллиард долларов в год. Отчасти этому будут способствовать краткосрочные меры: речь идет об использовании технологий искусственного интеллекта и интернета вещей (IoT) для автоматизации складов и распределительных центров. Другие возможности связаны с долгосрочными проектами, в частности с адаптацией автоматизированной доставки под запрос клиента (для более чем семи тысяч единиц продукции). Посмотрим, позволят ли компании P&G эта и другие инициативы экономить миллиард долларов каждый год, но уже можно сказать, что искусственный интеллект сыграет в этом важную роль.
Фермы, которые настраиваются сами
Технологии искусственного интеллекта значительно влияют не только на каналы дистрибуции, производство потребительских товаров и промышленного оборудования, но и играют важную роль в производстве продуктов питания. В сельском хозяйстве исключительно остро стоит вопрос повышения производительности труда. Согласно разным статистическим данным, 795 миллионов человек сегодня недоедают, и с поправкой на демографические показатели в следующие 50 лет придется произвести столько же продуктов, сколько за последние десять тысяч лет. Пресная вода и пахотные земли — это ресурсы, которые исторически было сложно приобретать или поддерживать в пригодном для земледелия состоянии. Точное земледелие — активно применяющее искусственный интеллект и узкие данные по сельскохозяйственным культурам — должно значительно увеличить урожайность, уменьшить расход ресурсов, в частности воды и удобрений, и в целом повысить эффективность аграрного сектора.
С этой целью в точном земледелии используется обширная сеть IoT-датчиков, собирающих подробные данные. Используются также фотографии, сделанные со спутников или дронов (благодаря им можно обнаружить признаки стрессовых реакций растений еще до того, как это станет заметно с земли). В полях применяются экологические датчики (позволяющие, например, отслеживать химический состав почвы). Данные также передаются с датчиков, установленных на сельскохозяйственной технике, кроме них используются данные прогнозов погоды и почвенная база данных.
Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес