Именно такие проблемы предстояло решить Skandinaviska Enskilda Banken (SEB), крупному шведскому банку, который захотел внедрить виртуального помощника. Amelia, созданная IPsoft (позднее ставшая Aida в приложении SEB), сейчас напрямую взаимодействует с миллионом клиентов SEB. «За первые три недели работы программа провела более 4000 бесед с 700 людьми и сумела решить большинство проблем», — сообщает Расмус Йерборг, директор по развитию SEB. Решение «делегировать» Aida все взаимодействие с клиентами было принято лишь после того, как банк протестировал программу внутри компании в качестве виртуального агента IT-поддержки, успешно оказывавшего помощь 15 000 сотрудников банка[39]
.Aida отлично справляется с обработкой естественного языка; технология способна отслеживать даже тон звонящего. Программа адаптируется, усваивая новые навыки; для этого она следит за работой сотрудников, общающихся с клиентами. Таким образом, ее возможности расширяются и совершенствуются; новые задачи и процессы взаимодействия с клиентами можно автоматизировать практически без прямого участия сотрудников фронт-офиса.
SEB — первый банк, использующий Amelia для общения с клиентами, и IPsoft помогла собрать внутрикорпоративный пул специалистов, способных тренировать программу. Эти люди-наставники контролируют обучение и производительность, находят новые способы применения технологии для обслуживания клиентов[40]
. Мы подробно обсудим подобные виды взаимодействия человека и машины в главе 5.Aida демонстрирует, что в масштабной и сложной бизнес-среде возможна автоматизированная коммуникация с клиентом на естественном языке. По мере того как совершенствуются приемы обработки естественного языка и улучшаются интерфейсы, автоматизированные коммуникации будут охватывать все больше бизнес-процессов в разных отраслях. В главе 4 мы обсудим, как чат-боты, использующие технологии обработки естественного языка, например Alexa от Amazon, становятся новыми «лицами» фронт-офиса компаний.
Трансформация целой отрасли
По мере того как бизнес-процессы миддл- и бэк-офисов становятся все «умнее» благодаря искусственному интеллекту, эта технология потенциально способна трансформировать целые отрасли. Например, в сфере IT-безопасности появляются компании, сочетающие методы машинного обучения для создания ультраинтеллектуальной, постоянно совершенствующейся защиты против вредоносного ПО. Такие системы могут выявлять опасные вирусы и программы еще до того, как они нанесут урон, а также обнаруживать уязвимости прежде, чем те превратятся в бреши, через которые хакеры смогут взять под контроль эти системы. В ряде случаев обеспечение IT-безопасности — это замкнутый автоматизированный цикл; люди могут отвлечься от повседневного администрирования и уделить время изучению угроз или созданию новых симуляций для дальнейшего тестирования и обучения ботов (см. врезку «Противоборство ботов»
).В рамках традиционной кибербезопасности компания может анализировать имеющиеся данные, обобщать характерные признаки угроз и использовать эту информацию для защиты от новых угроз в будущем. Это статическая операция, не способная к адаптации в режиме реального времени. Напротив, методы на основе искусственного интеллекта позволяют распознавать аномальные паттерны по мере их возникновения. Это достигается путем классификации моделей в зависимости от динамики сетевого трафика и ранжирования аномалий по степени отклонения от нормы. Способность искусственного интеллекта к анализу совершенствуется после устранения человеком или машиной очередной угрозы, так как новые знания накапливаются в процессе работы.
У каждой компании, занимающейся компьютерной безопасностью, свои подходы к этой проблеме. Так, SparkCognition предлагает продукт Deep Armor, в котором используется несколько технологий искусственного интеллекта, в том числе нейронные сети, эвристика, наука о данных и обработка естественного языка. Deep Armor способен обнаруживать никогда ранее не встречавшиеся угрозы и удалять вредоносные файлы.
Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес