Читаем Черные приливы полностью

Для прогнозирования последствий аварийного разлива нефти, происшедшего на основных трассах танкерного флота, следует знать, куда направлены преобладающие ветры, как они изменяются, какова средняя картина течений. Однако прогнозирование дрейфа пятен нефти — дело непростое. 10 лет назад в Массачусетском технологическом институте США были разработаны модели распространения нефтяных пятен на обширной акватории у берегов Новой Англии. В течение нескольких недель проводились эксперименты с пятнами специально разлитой на поверхности океана нефти, уточняющие скорость и характер их перемещения, а также скорость разложения разлитой нефти. Эксперименты сопровождались тщательными измерениями течений, волнения и ветров. В программу для ЭВМ, однако, пришлось вводить осредненные данные о ветре и модели течений для различных ситуаций. Естественно, что многие детали гидродинамического и ветрового режима оказались неучтенными. В результате расчеты по теоретическим моделям плохо согласовывались с реальными данными. Созданные с помощью ЭВМ модели траекторий движения пятен нефти около побережья к тому же были слишком упрощенными, поскольку по причинам математического характера и особенностей программирования удается решить задачу лишь для случая, когда берег представляется в виде отрезков прямых линий, которые не воспроизводят многих деталей реальных очертаний бухт и заливов. Согласитесь, что такое представление береговой линии очень приблизительно. Особенно усложняется задача в районе шхер с десятками небольших островков, у которых нефтяное пятно разбивается на множество пятен меньших размеров. Неудивительно поэтому, что полученные в экспериментах данные о скорости разложения разлитой нефти (когда остатки нефтяной пленки превращаются в комки мазута) и сведения, которые выдала ЭВМ, были различны.

Океан и атмосфера

Океан, занимающий более двух третей поверхности Земли, является не только огромнейшим природным резервуаром воды, но и аккумулятором солнечного тепла, оказывающим большое влияние на формирование погоды на нашей планете. Кроме того, океан — место обитания микроскопических водорослей, развивающихся в верхней водной толще, где солнечного света достаточно для фотосинтеза, и «вырабатывающих» значительное количество кислорода, переходящего через границу раздела океан — атмосфера в воздушную среду. Эти же водоросли играют роль активного поглотителя из атмосферы углекислого газа. Через поверхность океана осуществляется с атмосферой обмен теплом, влагой, газами, количеством движения. Влияет ли на эти процессы пленка нефти, плавающая на поверхности океана?

Свыше 99,9 процента энергии, определяющей погоду и климат и, в частности, приводящей в движение воды Мирового океана, дает Солнце. Прохождение солнечной энергии через атмосферу сопровождается ее участием в целом ряде процессов, в результате чего теряется практически половина этой энергии. Из того количества солнечной энергии, которое поступает к поверхности океана, определенная часть отражается от нее, а остальная проникает в океан. Если же в океане разлилась нефть, то отражающая способность океанской поверхности из-за нефтяной пленки становится другой и солнечного света отражается тогда значительно больше.

Изучение спектральных коэффициентов отражения нефти показало, что пленка нефти практически во всех участках спектра света отражает больше, чем морская вода (приблизительно в два раза при нормальном падении луча). Имеется спектральный участок (10–11 микрон), где коэффициент отражения от нефтяной пленки в 4 раза больше, чем коэффициент отражения морской воды. Поскольку в этом спектральном участке оптический контраст системы нефть — вода наибольший, то для обнаружения нефтяного загрязнения с успехом применяются углекислотные лазеры, работающие на близких длинах волн. В зависимости от угла падения солнечных лучей величина отраженной энергии меняется (чем ниже Солнце над горизонтом, тем процент отражения больше). Американский ученый Е. Андерсон, проводивший эксперименты по измерению коэффициентов отражения в условиях гладкой водной поверхности и безоблачного неба, показал, что когда солнце находится в зените, то отражается 3 процента солнечной энергии, а при высоте 5 градусов — около 42 процентов. Впрочем, эти работы показали, что если поверхность океана взволнованна, то при малой высоте солнца доля отраженного света будет меньше, чем в случае невзволнованной поверхности.

Таким образом, наличие нефтяной пленки на поверхности моря существенно уменьшает долю солнечной энергии, проникающей в толщу океанских вод. Входящая в воду солнечная радиация частично рассеивается, а также поглощается, превращаясь в тепло, причем в верхнем водном слое толщиной в 1 сантиметр поглощается до 20 процентов всей радиации. Слой воды толщиной в 100 сантиметров поглощает не менее 60 процентов приходящей радиации.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Что с нами происходит?: Записки современников
Что с нами происходит?: Записки современников

На страницах предлагаемого сборника отразились многие животрепещущие идеи наших дней, связанные с развитием духовной культуры общества.Проблемы экологии, вопросы хозяйствования органично сочетаются здесь с проблемами философии, литературы, театра, архитектуры. Среди авторов сборника — крупнейший современный философ А. Лосев, писатели В. Белов, В. Распутин, А. Адамович, Ю. Лощиц, известные публицисты В. Песков и А. Стреляный, советские ученые Ф. Шипунов, И. Толстой, Ю. Бородай, П. В. Флоренский и другие.В книге публикуются неизвестные материалы, принадлежащие великому русскому ученому В. И. Вернадскому и его ученику Р. С. Ильину, трагически погибшему в годы необоснованных репрессий.

Алесь Адамович , Валентина Сергеевна Неаполитанская , Татьяна Михайловна Глушкова , Фатей Яковлевич Шипунов , Юрий Михайлович Лощиц

Экология
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии