Широко известно, что лимбичeскaя система играет важную роль в адаптации и эмоционально-мотивационном поведении [Robinson, 1976]. B случаях эмоционального стресса функции лимбической системы превалируют над торакальными процессами, повреждение лимбической системы влияет на тип и степень речевых нарушений у человека. Частотная модуляция голоса также обеспечивается лимбической системой. Это видно из того, что возрастание мотивационного компонента в поведении, которое сопровождается голосовой реакцией, выражается в увеличении высокочастотных составляющих голосовых сигналов [Вартанян, 1990; Вартанян, Черниговская, 1990]. B связи с этим интересно отметить полученные нами данные, что существуют прямые реципpoкные связи между слуховой и лимбической системами, особенно в области высокочастотного представительства тональных сигналов как на уровне среднего мозга [Вартанян, Жарская, 1985], так и в коре больших полушарий [Vartanian, Shmigidina, 1991]. Как и у животных, некоторые голосовые реакции человека имеют источником возбуждение лимбической системы. Некоторые авторы считают, что звуковая вокализация животных, вызванная раздражением лимбической системы, является базисом для дальнейшего развития человеческой речи; другие полагают, что человеческая речь возникла исключительно в результате развития новых специфических областей коры. Эволюционные модификации сенсорных систем в филогенетических линиях и видах определили изменения в физических и физиологических характеристиках звука и слуха, а также голосовых качеств и сложности коммуникативных сигналов.
Например, анализ данных сравнительной физиологии показывает, что область детектируемых звуков у млекопитающих шире, чем у рыб и амфибий (три – пять октав у рыб по сравнению с шестью – десятью октавами у млекопитающих). Это связано в первую очередь с возрастанием чувствительности и расширением диапазона воспринимаемых высокочастотных звуков за счет эволюции среднего уха. Есть основания предполагать, что высокочастотная зона слуха человека наиболее эффективна для обучения [Вартанян, 1986]. В пользу такого предположения свидетельствует тот факт, что дети особенно чувствительны к высокочастотным звукам, а трудности в формировании речи особенно выражены, когда нарушено восприятие высокочастотных звуков при патологии. Рядом авторов [Masali, Tarli, Maffei, 1992] проанализированы анатомические изменения в эволюции уха у приматов и затем соотнесены с возможными межвидовыми взаимодействиями. Наконец, оценки вокализаций, используемых приматами и другими животными, дают основания полагать, что они сходны в следующих аспектах:
1) приматы распознают друг друга на основании индивидуальных характеристик голоса [Вартанян, 1986];
2) все виды животных проявляют чувствительность к формантным частотам и способны к фонемическому распознаванию [Lieberman, 1984];
3) все виды животных чувствительны к звукам внутривидовой коммуникации.
Коммуникационными могут служить и зрительные сигналы, некоторые из которых сходны для животных многих видов, например когда открытый рот свидетельствует о зевании или кашле, что наблюдается у всех млекопитающих.
Ряд авторов считают, что зрительные сигналы предшествуют речи в эволюции [Hewes, 1973, 1991; Kendon, 1991]. Узоры окраски, положение тела, выражение лица, позы представляют собой различные сообщения о поле, возрасте, индивидуальности, состоянии, дружелюбности, эмоциональности и т. д. Считается, что восприятие этих форм поведения осуществляется преимущественно с участием правого полушария, поскольку известно, что именно оно отвечает за анализ эмоциональных проявлений и пространственных отношений. Возможно, однако, что, как и при вокализациях, имеются межполyшaрные различия в обработке видоспецифических визуальных знаков. Например, включение левого полушария в анализ и интерпретацию знаков может увеличивать возможность восприятия по сходству знаков при расширении их репертуара.
Приведенные выше данные можно использовать для исследования следующих задач:
1) выявить, до какой степени человек может правильно опознавать и понимать звуки других видов;
2) определить нервные структуры, ответственные за восприятие голосовых сигналов разной значимости и взаимодействие слуховых воспринимающих областей мозга с системами генерации коммуникaционных звуков;
3) определить различия по электрическим потенциалам мозга, которые могут проявиться в точности восприятия и в соответствующих восприятию источниках нейронной активности, связанной с сигналами разной значимости и модальности (зрительной или звуковой);
4) установить роль внимания и обучения в скорости и точности восприятия и воспроизведения коммуникационных сигналов.
Наиболее обширными являются исследования структур мозга приматов, ответственных за генерацию и модуляцию видоспецифических звуков [Jurgens, 1986; Jurgens, Lu, 1993; Jurgens, Ploog, 1988; Jurgens, Schriever, 1991]. Можно надеяться, что исследование перечисленных выше вопросов облегчит понимание эволюции акустической коммуникации.