Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Теперь вернемся к вопросу о природе математики и причинах ее эффективности; по моему мнению, здесь следует применить комплементарность такого же типа. Да, математика была изобретена в том смысле, в каком «правила игры» – наборы аксиом – заданы человеком. Однако стоило нам ее изобрести, и она зажила собственной жизнью, и людям пришлось, и до сих пор приходится, исследовать все ее свойства – сообразно духу платонизма. Бесконечный перечень внезапных появлений золотого сечения, бесчисленные математические связи чисел Фибоначчи и тот факт, что мы до сих пор не знаем, бесконечно ли количество простых чисел Фибоначчи, – свидетельства этого поиска открытий.

Вольфрам придерживается очень похожих взглядов. Я спрашивал его, как он считает, «изобрели» математику или «открыли». Он ответил: «Если бы не было особого выбора и нам пришлось принять именно эту систему законов и правил, имело бы смысл говорить, что ее открыли, но поскольку выбор был, и еще какой, а наша математика основана исключительно на исторической договоренности, я бы сказал, что ее изобрели». Ключевые слова – «историческая договоренность»: они заставляют предположить, что система аксиом, на которых основана наша математика, возникла случайно на основе арифметики и геометрии древних вавилонян. Это тут же наталкивает на два вопроса: (1) Почему вавилоняне развивали именно эти дисциплины, а не стали разрабатывать другие наборы правил? И, перефразируя вопрос о том, как математика описывает мироздание: (2) Почему эти дисциплины и их следствия вообще пригодились в физике?

Интересно, что ответы на оба вопроса, вероятно, взаимосвязаны. Возможно, математику как таковую породило наше субъективное восприятие устройства природы. Не исключено, что геометрия попросту отражает человеческую способность легко распознавать линии, грани и кривые. А арифметика – человеческую способность группировать дискретные объекты. При такой картине мира математика, которой мы располагаем, – следствие биологического устройства человека и того, как люди воспринимают мироздание. Таким образом, математика и вправду в некотором смысле представляет собой язык вселенной – но вселенной в человеческом восприятии. Если во Вселенной есть другие разумные цивилизации, они, вероятно, разработали совсем другие системы законов, ведь у них, наверное, совсем другие механизмы восприятия. Скажем, если капля воды сливается с другой каплей или молекулярное облако в галактике сливается с другим облаком, они составляют одну каплю и одно облако, а не два. Так что если существует цивилизация, где тела в основном жидкие, а не твердые, один плюс один для нее не обязательно равняется двум. Такая цивилизация, возможно, не знает, что такое простые числа и золотое сечение. Другой пример: едва ли можно сомневаться, что если бы гравитация на Земле была гораздо сильнее, вавилоняне и Евклид сформулировали бы не Евклидову геометрию, а какую-нибудь другую. Общая теория относительности Эйнштейна научила нас, что в очень сильном гравитационном поле пространство вокруг нас искривилось бы, перестало быть плоским: лучи света шли бы по кривой, а не по прямой линии. Геометрия Евклида – всего-навсего плод наблюдений за слабым гравитационным полем Земли (другие геометрии – на искривленных поверхностях – были открыты и разработаны только в XIX веке).

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука