Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Даже простому вопросу о происхождении названия «золотое сечение» посвящено огромное количество исследований, а особенно глубоко этим интересовался канадский математик и писатель Роджер Герц-Фишлер, о чем и рассказано в его превосходной книге «A Mathematical History of the Golden Number» («Математическая история золотого сечения»). Учитывая, какой пристальный интерес вызывало это число еще со времен античности, можно было бы подумать, что и название это античного происхождения. И в самом деле, некоторые авторитетные труды по истории математики, например, «Рождение математики во времена Платона» Франсуа Ласерре (Francois Lasserre. «The Birth of Mathematics in the Age of Plato») и «История математики» Карла Б. Бойера (Carl B. Boyer

. «History of Mathematics»), возводят это название, соответственно, к XVI и XVII векам. Однако дело, скорее всего, не в этом. Насколько я могу судить по обширным источниковедческим данным, впервые это словосочетание применил в 1835 году немецкий математик Мартин Ом (брат знаменитого физика Георга Симона Ома, в честь которого назван закон Ома в электромагнетизме) во втором издании своей книги «Чистая элементарная математика» (Martin Ohm. «Die Reine Elementar-Mathematik»). В одной сноске Ом пишет: «Подобное разделение произвольного отрезка на две части принято также называть золотым сечением». Формулировка Ома однако создает впечатление, что он не сам придумал этот термин, а скорее привел уже принятое название. Тем не менее, в первом издании книги, опубликованном в 1826 году, Ом этого названия не приводит, а это заставляет сделать по крайней мере тот вывод, что выражение «золотое сечение» (нем. «der Goldene Schnitt
») завоевало популярность лишь к 1835 году. Вероятно, ранее это было лишь разговорное выражение, применявшееся преимущественно в математических кругах. Однако нет никаких сомнений, что после книги Ома термин «золотое сечение» стал часто повторяться в немецкой литературе по математике и искусствоведению. А в англоязычной печати это выражение, по всей видимости, дебютировало в статье Джеймса Салли (James Sully) по эстетике, которая появилась в девятом издании Британской энциклопедии в 1875 году. Салли описывает «интересное экспериментальное исследование… проведенное Густавом Теодором Фехнером (известным немецким физиком и первопроходцем в области психологии, жившим в XIX веке) о том, что «золотое сечение» первоначально было именно зримой пропорцией» (об экспериментах Фехнера мы подробно поговорим в главе 7). В математическом контексте этот термин впервые встретился в англоязычной литературе, по всей видимости, в статье Э. Эккерманна, которая так и называлась «Золотое сечение» (E. Ackermann
. «The Golden Section») и была напечатана в журнале «American Mathematical Monthly» в 1895 году, а также – примерно в это же время, в 1898 году – в книге «Введение в алгебру» известного преподавателя и писателя Дж. Кристала (1851–1911). Позвольте мне отметить любопытства ради, что единственное определение «золотого числа», появившееся в издании французской энциклопедии «Nouveau Larousse Illustr'e» 1900 года, гласит: «Число, определяющее каждый год лунного цикла». Это относится к положению календарного года в пределах 19-летнего цикла, после которого фазы луны снова приходятся на те же даты. Очевидно, во французскую математическую номенклатуру «золотое число» и тем более «золотое сечение» проникало гораздо дольше.

Однако почему это вообще так важно? Из-за чего, собственно, это число или геометрическая пропорция так сильно нас интересуют? Привлекательность золотого сечения в первую очередь коренится в том факте, что оно обладает прямо-таки пугающим свойством вылезать там, где его никак не ожидаешь.

Возьмем, к примеру, самое обычное яблоко – фрукт, который часто и, вероятно, ошибочно ассоциируется с древом познания, играющим столь заметную роль в библейском рассказе о грехопадении – и разрежем его поперек. И мы увидим, что яблочные семечки образуют пятиконечную звезду – она же пентаграмма (рис. 3). Каждый из пяти равнобедренных треугольников, составляющих лучи пентаграммы, обладает таким свойством, что соотношение длины его длинной стороны к короткой, то есть к основанию, равно золотому сечению – 1,618… Правда, вы, вероятно, решите, что это не так уж и удивительно. В конце концов, золотое сечение и определяется в первую очередь как геометрическая пропорция, так что, вероятно, не надо так уж поражаться, если эта пропорция встречается в некоторых геометрических фигурах.


Рис. 3


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука