Начавшись с истории глубокого анализа данных LexisNexis®, LexisNexis Risk Solutions помогает клиентам оценивать, предсказывать и управлять рисками во множестве отраслей (в том числе страхование, банковский сектор, розничная торговля, здравоохранение, коммуникации и бюджетный сектор).
За стратегию платформы и разработку нового продукта отвечают д-р Флавио Вилланустре (Flavio Villanustre), вице-президент по технологической инфраструктуре и разработке продукта, и Дэвид Гловацки (David Glowacki), вице-президент по инженерному проектированию продукта. Они участвуют в ряде проектов, задействующих большие данные, аналитику и машинное обучение, отвечают за команды, строят и запускают машины, которые начинают уметь (почти) все.
Они создали не одну, а множество интеллектуальных систем, которые помогают клиентам в управлении разногласиями, выявлении мошенничества, отслеживании результатов лечения, рисков и других основных бизнес-процессов. В работе они пришли к определенным умозаключениям, которые можно применить к вашему бизнесу.
Данные без интеллектуальной системы – просто белый шум
. Многие компании, с которыми мы работали, все еще не могли разобраться с новыми сырьевыми материалами. Лидеры закопались не только под своими данными, но и под многочисленными инструментами – API-библиотеки, онлайн-программы межмашинного обучения, решения на основе облаков, автоматизированные системы и так далее. Хотя иметь так много инструментов и широко доступных возможностей – это хорошо, но такое количество опций может оказаться и ошеломляющим, может подавлять.Интеллектуальные системы, как та, что построил LexisNexis, оживают, когда присоединяют данные к признанным и значительным результатам. Как заметил Вилланустре: «Цель – взять неразрешимую задачу, что-то, с чем будет бесконечно трудно разобраться человеку, и сократить ее до набора блоков данных, чтобы представить исследователю или аналитику из ФБР и получить из этого достаточно информации, в которую можно погрузиться и дать начало расследованию, если эксперты сочтут, что оно того стоит».
Вилланустре продолжает: «Лидеры добиваются лучшей реализации: какие бы данные они ни собирали – через экономические операции и другие сведения, полученные в процессе ведения бизнеса, – все данные имеют какую-либо ценность. Добавив блок данных к другому блоку данных, вы потенциально способны совершить что-то совершенно новое».
Не считайте, что должны сделать все это сами
. Как мы уже говорили, сегодня многие решения на основе искусственного интеллекта просто не доступны в «готовом» виде. Именно здесь вступают такие компании, как LexisNexis и другие. «Мы твердо уверены, что будущее за инструментами, дающими возможности, – говорит Вилланустре. – Иметь возможность взять все наличные ресурсы и представить их в осмысленном виде пользователю, который, возможно, обладает глубокими познаниями в конкретной области, но не обладает какими-то техническими знаниями, значит, расширить число людей, которые могут по-настоящему «рыть землю» и извлекать пользу из имеющихся у нас ресурсов».Рекомендации для руководителей заключаются в том, чтобы сосредоточиться на конкретных процессах и опыте, который вы хотите воплотить в интеллектуальной системе. Если вы определили процесс или опыт, к которому хотели бы применить новую машину, выясните, существует ли готовое решение у партнеров (как LexisNexis). И хотя может быть правильным купить часть сервисов у общего провайдера платформ (например, Google, Amazon Web Services, Palantir, Microsoft и др.), будьте готовы к серьезной работе по конфигурации, чтобы сделать технологию полностью подходящей под требования вашего бизнеса.
Если ваша интеллектуальная система хороша, вам не понадобятся десять тысяч специалистов по обработке данных
. Если системы оснащены измерительными приборами, вы получаете поток данных. Общий рефлекс компаний – нанять кучу специалистов по обработке данных, чтобы разбирались в информации. Изначально это может быть правильным порывом, но со временем справляться все равно будет трудно.Гловацки и его команда ясно осознают, что бремя разгребания информации должно перейти от людей к платформе: «Со временем простое получение доступа к горе информации уже не поможет». Именно здесь интеллектуальные системы имеют решающее значение, поскольку действительное «создание смыслов» может и должно быть прописано в ИИ.
Как заметил Вилланустре: «Почему сегодня так трудно найти специалиста по обработке данных? Потому что вы как будто пытаетесь найти единорога. Вы пытаетесь найти кого-то с хорошими программными навыками, обладающего системными, глубокими познаниями в математике, в физике, а также инженерным и аналитическим умом, чтобы решать проблемы и создавать программы. Этот специалист также должен быть экспертом в конкретной области, понимать, к чему идет, и разбираться в данных. Мы говорим о ком-то, кого не существует… Единственный, кого вы не можете заменить, это эксперт в данной области. Все остальное может быть сделано машиной».