Астрономы не сразу поняли, какие астрофизические процессы лежат за этими изменениями. Временная шкала у разных источников составляла от секунды до всего лишь миллисекунды, а периодичность часто терялась в шуме более хаотических колебаний. У черных дыр наблюдался специфический рисунок нарастания и снижения яркости: сначала 10 секунд для завершения осцилляции, затем через несколько недель или месяцев – ускорение до десятой доли секунды, далее изменения прекращались, и цикл повторялся. Наблюдения и моделирование архетипичной черной дыры Лебедь Х-1 выявили источник колебаний. Это пульсации, вызванные газом, покидающим внутреннюю область аккреционного диска и увлекаемым к горизонту событий. Волнительно наблюдать в реальном времени за предсмертными конвульсиями материи, падающей в черную дыру[288]
.Астрономы подозревали, что от массы черной дыры может зависеть частота изменений. Газ движется внутрь по спирали в аккреционный диск, ускоряясь, и скапливается у черной дыры, испуская мощное рентгеновское излучение. У маленьких черных дыр эта область затора находится близко, и «рентгеновские часы» тикают быстро. У больших дыр эта область дальше, поэтому ход «рентгеновских часов» медленнее. Данная зависимость настолько устойчива, что изменение яркости рентгеновского излучения используется для измерения массы черных дыр[289]
, в том числе самой маленькой из известных нам. При поперечнике 24 км и массе 3,8 солнечных она лишь чуть превышает критическую массу нейтронной звезды.Недавно группа Адама Инграма из Амстердамского университета объединила данные об изменении яркости рентгеновского излучения и о форме спектральной линии железа. Инграм, занявшийся квазипериодическими осцилляциями в ходе работы над диссертацией в 2009 г., говорит: «Сразу стало ясно, что это нечто примечательное, поскольку происходит в области, очень близкой к черной дыре». Пользуясь данными двух рентгеновских спутников, его группа доказала, что вещество на орбите вокруг черной дыры попало в гравитационный «водоворот», созданный черной дырой: «Представьте, что вращаете ложку в меду. Мед – это пространство, и все, что в нем находится, будет “увлечено” в круговое движение вслед за вращающейся ложкой». Ученые выбрали черную дыру с периодом колебаний 4 секунды и внимательно наблюдали за ней почти три месяца. Линия железа вела себя именно так, как предсказывала общая теория относительности. «Мы измеряем непосредственно движение материи в сильном гравитационном поле возле черной дыры», – сказал Инграм[290]
. На сегодняшний день это один из нескольких примеров, как теория Эйнштейна проверялась в подобных условиях[291].Квазипериодические осцилляции наблюдаются и у активных галактик. Время изменения измеряется не секундами, а периодом от нескольких часов до нескольких месяцев[292]
. Что замечательно, из этого следует, что аккреционные диски ведут себя одинаково, несмотря на колоссальный разброс физических параметров – от черных дыр звездной массы до сверхмассивных черных дыр в далеких галактиках.Когда черная дыра съедает звезду
Что происходит, когда черная дыра проглатывает звезду? В 1998 г. Мартин Рис предложил ответ. Он годами размышлял о возможностях обнаружения черных дыр, которые должны скрываться в центре каждой галактики. Что случится с незадачливой звездой, угодившей в область экстремальной гравитации? По мере приближения звезды к черной дыре ее сначала растягивают, а затем разрывают приливные силы. Часть ее вещества выбрасывается вовне с большой скоростью, а остальное проглатывается черной дырой, вызывая яркое свечение, которое может длиться несколько лет[293]
.Такая судьба грозит только звездам, которые подбираются слишком близко к черной дыре. У каждой черной дыры есть радиус, в пределах которого приливообразующие силы разрушают небесное тело. Вне этой границы звезды сохраняют свою форму. Как только звезда входит в это пространство, начинается разрушение. Около половины массы звезды выбрасывается наружу, другая половина движется по эллиптическим орбитам, постепенно приводящим газ в аккреционный диск. Черная дыра питается этим веществом, находящимся вплотную к горизонту событий, а преобразование гравитационной энергии в излучение вызывает яркое свечение[294]
. Иногда событие порождает релятивистские джеты (илл. 49). Представим, что Солнце приближается к черной дыре, которая находится в центре нашей Галактики. Ничего не случится до тех пор, пока Солнце не окажется в пределах 160 млн км от горизонта событий; затем Солнце разорвет на части, а все планеты, включая Землю, разметает, как кегли, и вероятность быть отброшенными на безопасное расстояние или проглоченными черной дырой будет равной. Приближение на такую близкую дистанцию маловероятно, поэтому разрыв приливными силами – редкое событие, случающееся в любой галактике примерно раз в 100 000 лет.Swift J1644+57: возникновение релятивистского джета