Между тем усовершенствование способа обнаружения света обеспечило и дополнительную глубину изображения. Глаз человека как химический детектор – несовершенен. Чтобы создать иллюзию непрерывного движения, он должен передавать мозгу поступающую на сетчатку информацию десять раз в секунду. Следовательно, глаз собирает свет – или «интегрирует» – только в течение десятой доли секунды. В середине XIX в. была изобретена фотография, и вскоре астрономы стали использовать ее для получения изображений ночного неба. Свет фиксируется химическим процессом – не более эффективным, чем в случае с человеческим глазом, но длинная выдержка значительно увеличивает глубину. Настоящий прорыв произошел в 1980-х гг., когда существенно усовершенствовали цифровое формирование изображений. Современные приборы с зарядовой связью (ПЗС) с эффективностью 80–90 % преобразуют входящие фотоны в электроны, а их – в электрический сигнал, который легко оцифровывается. ПЗС – почти совершенные детекторы, в 100 000 раз более эффективные, чем глаз человека.
Благодаря сочетанию этих факторов лучшие телескопы по глубине превосходят человеческое зрение в 100 млрд раз. Это значит, что если обитатель Северного полушария видит лишь одну внешнюю галактику – М31, то большой телескоп видит 100 млрд галактик. Следовательно, астрономы могут наблюдать не только звезды, удаленные на несколько сотен световых лет, но и свет, находившийся в пути 13 млрд лет. ПЗС настолько усовершенствовались, что за год большие телескопы регистрируют больше фотонов, чем глаза всех людей в истории человечества.
Вторая революция в видении Вселенной произошла в первой половине XX в. Со времен наших древнейших предков, глядевших в небеса над африканской саванной, астрономы пользовались узким фрагментом электромагнитного спектра. Свет от самого светлого голубого до густейшего красного различается длиной волны или частотой всего в два раза. Самые большие телескопы лишь глубже заглядывают в ту же самую узкую щель в спектре.
Развитие технологий расширило электромагнитный спектр для астрономии. Просмотр Вселенной в видимом свете столь же ограничен, что и черно-белое изображение – в сравнении с полноцветным. Пожалуй, лучшую аналогию предлагает музыка: видимый свет – это две соседние клавиши фортепиано, а электромагнитный спектр от радиоволн до гамма-лучей – вся клавиатура из 88 клавиш. Первыми невидимыми волнами в арсенале астрономии стали радиоволны. В конце XIX в. Гульельмо Маркони[315]
продемонстрировал, что радиоволны можно передавать и принимать на больших расстояниях, и, как мы уже видели, через 30 лет Карл Янский с помощью простой антенны обнаружил радиоволны, идущие из центра нашей Галактики. В 1920-х гг. два астронома обсерватории Маунт-Вилсон использовали устройство, преобразующее разницу температур в электрический сигнал для регистрации инфракрасного излучения ряда ярких звезд[316], но инфракрасная астрономия стала развиваться только в 1970-х гг. – с появлением более чувствительных детекторов. Наблюдения на невидимых коротких волнах были невозможны до тех пор, пока астрономы не нашли способ обойти излучение, поглощаемое атмосферой Земли. Рентгеновское излучение Солнца в 1949 г. впервые обнаружила геофизическая ракета, а эталонную черную дыру Лебедь Х-1 открыли через 15 лет. Рентгеновская астрономия быстро развивалась в 1970-х гг., когда была запущена серия спутников. Космические гамма-лучи были предсказаны за годы до того, как их увидели спутники в 1990-х гг.[317]Развитие технологий обеспечило астрономов инструментами для регистрации волн – как очень длинных, до 10 м, так и очень коротких, длиной в тысячную долю размера протона (частоты от 108
до 1027 Гц). Расширение доступного диапазона, ранее превосходившего возможности глаза всего в два раза, а теперь – в десять миллиардов миллиардов раз, показывает, как сильно технологии трансформировали наш взгляд на Вселенную. Не так много источников можно зарегистрировать на всех длинах волн электромагнитного спектра, и все они являются активными галактиками, питаемыми сверхмассивными черными дырами[318].Все знания о Вселенной мы получаем с помощью телескопов, собирающих излучение. Очень легко забыть о том, что мы полагаемся на косвенную информацию. Вселенная полна материи: крупицы пыли, газовые облака, луны, планеты, звезды, галактики. Мы не видим эту материю воочию, а судим о ее свойствах по взаимодействию с электромагнитным излучением. Химические элементы определяются по характерным спектральным линиям излучения или поглощения. Крупицы пыли проявляют себя, поглощая свет и излучая инфракрасные волны. Луны и планеты видны в отраженном свете ближних звезд. Звезды видимы за счет излучения, являющегося побочным продуктом реакций ядерного синтеза. Галактики картируются при помощи доплеровского смещения спектральных линий их газа и звезд.