Мы прервали рассказ о попытках зарегистрировать гравитационные волны в момент, когда в этой сфере царил хаос. Никто не смог повторить результаты Вебера, его научная репутация была погублена. Позорное пятно казалось несмываемым, и это несправедливо. Охотники за гравитационными волнами считались шарлатанами или глупцами – а может, теми и другими.
Однако нашлась группа исследователей, чей азарт лишь подхлестнула неспособность воспроизвести результаты Вебера. Как экспериментаторы они были намерены найти лучшие способы. Оптимизм вселяло обнаруженное Тейлором и Халсом замедление вращения пульсаров, что доказывало существование гравитационных волн. В эту мужскую компанию (поскольку это была и есть сфера мужского доминирования) входил физик Массачусетского технологического института Райнер Вайсс. Когда он был ребенком, его семья бежала из нацистской Германии. Он рос в Нью-Йорке, предоставленный сам себе, с головой уйдя в увлечения: классическую музыку и электронику. Он бросил учебу в МТИ, прошел весь путь с самой нижней ступени – с техника в физической лаборатории – и вернулся в МТИ, но нелегко было добиться штатной должности. Разочарованием обернулись и попытки объяснить студентам результаты Вебера. «Я, хоть убей, не мог понять затею Вебера, – сказал он. – Я не считал, что он прав, и решил пойти своим путем»[339]
.Все лето Вайсс в подвале один работал над идеей, возникшей из обсуждений со студентами МТИ[340]
, и создал детектор, являвшийся не отдельным стержнем-антенной, а интерферометром. Представьте два металлических стержня, соединенных под прямым углом в форме буквы L. Если гравитационная волна приходит сверху, то вследствие того, что она сжимает и растягивает пространство, она делает один стержень совсем немного короче, а другой – чуть длиннее. В следующее мгновение происходит противоположное, и схема повторяется, пока волна активна. Вместо того чтобы пытаться обнаружить превращение единственного стержня в звенящий колокольчик, Вайсс должен был зарегистрировать попеременное изгибание двух стержней.Эксперимент Вебера был в тысячи раз менее точен, чем необходимо для получения результата, и Вайсс знал, что должен добиться радикальных улучшений. Его осенила мудрая мысль использовать свет как линейку. Его «стержни» представляли собой длинные металлические трубки с откачанным изнутри воздухом, поскольку в вакууме свет распространяется с постоянной скоростью. Лазер в изгибе L-образной конструкции посылает свет одной длины волны через светоделитель, так что половина попадает в плечо интерферометра и другая половина – под прямым углом в другое плечо. Свет отражается от зеркала в конце каждого плеча, возвращается в изгиб L и вновь соединяется в детекторе. В норме световые волны возвращаются по обоим плечам интерферометра строго синхронно, их пики и спады совпадают. Если же через инструмент проходит гравитационная волна, один пучок света проходит чуть меньшее расстояние, пики и спады не совпадают, и интенсивность света снижается (илл. 57).
В теории все просто. Трудность представляет исключительная точность измерений. Мало того, что амплитуда колебаний пространственно-временного континуума очень мала – у них очень большая длина волны. Типичная частота гравитационных волн, возникших при столкновении черных дыр, составляет 100 Гц, то есть 100 колебаний в секунду. Однако типичная длина волны – 3000 км. Оптимальная длина плеч инструмента – четверть длины волны, поскольку от сдвига на четверть волны в том или ином направлении зависит, будет ли усилен или нейтрализован сигнал. Вайсс знал, что не может сделать вакуумную трубу длиной 750 км, но решением стало многократное отражение света в обе стороны в более короткой трубе. Вайсс описал свою идею в техническом предложении МТИ в 1972 г. Это, возможно, самая влиятельная статья, так и не опубликованная в научном журнале[341]
.Начало пути было трудным. Вайсс приступил к работе над прототипом интерферометра с 1,5-метровыми плечами. Даже для такого прибора – в сотни раз меньше и дешевле любого работоспособного инструмента для регистрации гравитационных волн – он с трудом находил финансирование. Руководству затея казалась сомнительной, а самый влиятельный его коллега, Филип Моррисон, был настроен глубоко скептически. В начале 1970-х гг. отсутствовали даже убедительные свидетельства того, что Лебедь Х-1 является черной дырой. Моррисон считал, что черных дыр не существует, а раз это самые мощные потенциальные источники гравитационных волн, Вайсс даром тратит время. Вайсс получил немного денег от военных, но и это финансирование обрубили с принятием поправки к Закону об ассигнованиях на военные нужды, запретившей военным поддерживать гражданские проекты.