В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: Rμν
— ½RОсновная их соперница, модель стационарного состояния Хойла и его коллег, была полностью опровергнута в 1960–х годах в свете объяснений, которые Большой взрыв давал расчетам радиоисточников, относительному изобилию водорода и гелия, а также космическому микроволновому фоновому излучению[114]
. Однако оставалось множество важных технических проблем, в том числе проблема горизонта, отношения материи/антиматерии и изначальной сингулярности t = 0. Теоремы Роджера Пенроуза [73], Стивена Хокинга [35, 36, 38] и Роберта Героха [29] в 1960–х годах доказали, что космологические пространства–времена, удовлетворяющие полевым уравнениям Эйнштейна, должны быть сингулярными, если выполняются определенные условия, по–видимому, выполняющиеся в реальной вселенной[115]. Самое важное из этих условий, не считая существования замкнутой поверхности — «ловушки» (что следует из существования космического фонового излучения черного тела), следующее: тензор энергии массы Тμν должен подчиняться неравенству (Тμν — ½gμνT) uμuν ≥ 0 для всех единичных время–подобных 4–мерных векторов и. Для поля газообразной материи неравенство сокращается до условия, что ρ + 3р ≥ 0, где ρ — плотность энергии газа, а р — его давление. Стандартные модели Большого взрыва удовлетворяют этим условиям и, следовательно, характеризуются изначальной сингулярностью. Однако одна из версий теории стационарного состояния («теория почти стационарного состояния») до сих пор не опровергнута и, по сообщениям исследователей, согласуется с наблюдениями [39].17.2.2. Инфляционная модель / модель горячего Большого взрыва
Инфляционные модели были разработаны в 1980–х годах Аланом Гутом. Они предполагают в очень ранней вселенной (около планковского времени 10–43
секунд) расширение по экспоненте до того, как все успокаивается и переходит к одному из обычных сценариев Большого взрыва. Инфляционный Большой взрыв предлагает решения для проблем горизонта, однородности и формирования структур, но не устраняет разногласия относительно t = 0. Инфляционные модели нарушают неравенство ρ + 2р ≥ 0, оставляя, таким образом, вопрос о существовании изначальной сингулярности открытым или даже, возможно, в принципе «нерешаемым»[116]. «Вечная хаотическая инфляция» Андрея Линде предполагает, что во вселенной существует множество расширяющихся областей, подобных нашей, но каждая со своими параметрами; они бесконечно воспроизводятся и создают новые расширяющиеся области, вместе образуя всеохватывающую квазифрактальную структуру, которая существует вечно [57]. Изначальные условия инфляции заданы некоей предшествующей эрой квантовой гравитации.17.2.3. Квантовая гравитация / квантовая космология
Последние исследования в области квантовой космологии включают в себя модель Хартла / Хокинга [31], инстантон Тьюрока / Хокинга, сценарии «до Большого взрыва», брейнкосмологию и т. д. Хотя эти сценарии совершенно различны, оканчиваются они одинаково — Большим взрывом, за которым следует инфляционная эпоха. Однако квантовая космология весьма спекулятивна. Теории, включающие в себя квантовую гравитацию, лежащую в основе квантовой космологии, чрезвычайно трудны для проверки и еще больше усложняют философские дискуссии, которые уже существуют в связи с квантовой механикой, поскольку областью исследований теперь является вселенная в целом[117]
.17.2.4. «Нижний предел» в космологии далекого будущего и обсуждения возможности жизни в нем