На этих диаграммах горизонтальная ось соответствует пространству[167]
, а вертикальная — времени. Путь частицы в пространстве-времени называется ее «мировой линией». Если частица даже находится в состоянии покоя, она движется во времени, и ее мировая линия в этом случае представляет собой вертикальную прямую. Если частица перемещается в пространстве, ее мировая линия становится наклонной: чем больше наклон, тем выше скорость частицы. Во времени частицы могут двигаться на диаграмме только вверх, а в пространстве способны перемещаться как вперед, так и назад. Их мировые линии могут в разной степени приближаться к горизонтальной оси, но никогда не совпадают с последней: это означало бы, что перемещение частицы из одной точки в другую не требует времени.Пространственно-временны
е диаграммы используются в релятивистской физике для изображения взаимодействия между различными частицами. Для каждого процесса можно построить диаграмму и вывести математическую формулу, характеризующую его вероятность. Так, процесс столкновения, или «рассеяния», электрона и фотона можно представить в виде следующей диаграммы (рис. 24).
Рис. 24.
Рассеяние при столкновении электрона с фотоном
Эта диаграмма читается следующим образом (снизу вверх согласно течению времени): электрон, обозначенный как е
—, сталкивается с фотоном (γ); электрон поглощает фотон, продолжая движение с несколько изменившейся скоростью (на диаграмме это отражается изменением угла наклона его мировой линии); через некоторое время электрон испускает фотон и изменяет первоначальное направление движения.Дисциплина, рассматривающая системы этих пространственно-временных диаграмм и математических формул, называется квантовой теорией поля. Это одна из самых важных релятивистских теорий современной физики (их мы рассмотрим позже). Для обсуждения пространственно-временны
х диаграмм нам достаточно ознакомиться с двумя самыми характерными ее особенностями. Первая состоит в том, что все взаимодействия сводятся к возникновению и исчезновению частиц, например к поглощению и последующему испусканию фотона, изображенному на диаграмме. Вторая имеет отношение к принципиальной симметричности частиц и античастиц. Для каждой частицы есть античастица с такой же массой и противоположным зарядом. Так, античастица электрона называется позитроном и обычно обозначается как е+. Для фотона, не имеющего электрического заряда, античастицей будет сам фотон. Он может распадаться на позитрон и электрон, а последние — объединиться и образовать фотон в обратном процессе, именуемом аннигиляцией.Есть хитрость, которая позволяет упростить пространственно-временны
е диаграммы. Стрелка на мировой линии используется не для обозначения направления движения частицы (это не нужно: очевидно, что все частицы движутся во времени вперед, а на диаграмме, соответственно, вверх). Она применяется для того, чтобы провести различие между частицами и античастицами: если стрелка направлена вверх, мы имеем дело с частицей (например, электроном), а если она указывает вниз, перед нами античастица (соответственно, позитрон). Фотон, который является одновременно и античастицей, обозначается на диаграммах прерывистой линией без стрелки. Так мы можем смело отказаться от обозначений на диаграмме, не рискуя при этом совершить ошибку: все линии со стрелками обозначают электроны, без стрелок — фотоны. Для упрощения мы можем отказаться от осей координат пространства и времени, помня, что ось времени имеет направление снизу вверх, а движение в пространстве обозначается слева направо. В результате пространственно-временная диаграмма, изображающая столкновение фотона с электроном, приобретает такой вид, как на рис. 25.
Рис. 25.
Рассеяние при столкновении электрона с фотоном
Чтобы построить диаграмму, изображающую столкновение фотона с позитроном, нужно изменить направление стрелок в верхней диаграмме (рис. 26).
Рис. 26.
Рассеяние при столкновении позитрона с фотоном