Читаем Десять книг об архитектуре. полностью

Если имеется равносторонний прямоугольный участок или поле и его требуется удвоить, то, так как нельзя найти посредством умножения потребного для этой цели числа, площадь выводится посредством правильного проведения линий. Доказательство этому следующее: площадь прямоугольного участка, имеющего в длину и в ширину по десяти футов, равняется ста футам. Если же потребуется ее удвоить, сделать ее в двести футов, с сохранением равенства сторон, спрашивается, какой величины должна быть сторона этого квадрата, чтобы получилась удвоенная площадь, равная двумстам футов. Путем числа это сделать невозможно. Ибо если взять четырнадцать, то при умножении получится сто девяносто шесть футов, а если пятнадцать, то двести двадцать пять футов.

5. Итак, раз этого нельзя вывести путем числа, то в прямоугольнике, имеющем в длину и в ширину по десяти футов, из угла в угол следует провести диагональ, для разделения его на два равновеликих треугольника площадью в пятьдесят футов каждый, а по длине этой диагональной линии — вычертить равносторонний прямоугольный участок. Таким образом, в большем квадрате получится четыре треугольника той же величины и такого же числа футов, как и два пятидесятифутовые треугольника, образованные в меньшем квадрате посредством рассечения его диагональю. Таким способом Платон показал удвоение линейным путем согласно чертежу, данному нами внизу страницы.

6. Также и Пифагор показал способ делать наугольник без ухищрений мастера, и то, чего с величайшим трудом добиваются мастера, будучи едва в состоянии сделать наугольник правильным, то путем правильного применения его вычислений и приемов получается безукоризненным. Ибо если взять три линейки, одну в три фута, другую в четыре, а третью в пять футов, и сложить их так, чтобы они касались друг друга своими вершинами, образуя фигуру треугольника, то получится безукоризненный наугольник. Если же по длине каждой из этих отдельных линеек вычертить отдельные равносторонние прямоугольники, то площадь квадрата со стороною в три фута будет равна девяти футам; со стороною в четыре — шестнадцати, со стороною в пять — двадцати пяти.

7. Таким образом, общая площадь двух квадратов со сторонами длиною в три и четыре фута в точности равна по числу футов площади одного, вычерченного на стороне длиною в пять. Когда Пифагор это открыл, он, не сомневаясь, что это открытие внушено ему Музами, говорят, принес им, в знак величайшей благодарности, жертвы. Эта теорема полезна одинаково как и вообще для многих вещей и расчетов, так в частности применима и при постройке лестниц в зданиях, давая возможность делать ступени на надлежащем уровне.

8. Действительно, если вышину этажа от верхнего наката до уровня пола внизу разделить на три части, то пять таких частей дадут правильной длины наклон лестничных тетив. Поэтому четыре части, каждая такой же величины, как одна из трех, составляющих вышину между накатом и уровнем пола, должны отойти от отвеса, и здесь надо поставить нижние опоры тетив. При таком устройстве будет правильно выровнено и размещение ступеней лестниц. Чертеж для этого также будет дан ниже.

9. Что же до Архимеда, то из всех его многочисленных и замечательных открытий приводимое мною является, несомненно, доказательством прямо-таки безграничной его изобретательности. А именно, когда Гиерон, достигший царской власти в Сиракузах, после удачного завершения своих предприятий, решил по обету бессмертным богам поместить в одном из храмов золотой венец, он заказал сделать его за определенную плату и отвесил нужное количество золота подрядчику. В назначенный по договору срок тот доставил царю тонко исполненную работу, в точности, видимо, соответствовавшую весу отпущенного на нее золота.

10. После же того как сделан был донос, что часть золота была утаена и при изготовлении венца в него было примешано такое же количество серебра, Гиерон, негодуя на нанесенное ему оскорбление и не находя способа доказать эту покражу, обратился к Архимеду с просьбой взять на себя разрешение этого вопроса. Случилось так, что в то время как Архимед над этим думал, он пошел в баню и, садясь в ванну, заметил, что чем глубже он погружается в нее своим телом, тем больше через край вытекает воды. И как только это указало ему способ разрешения его вопроса, он, не медля, вне себя от радости, выскочил из ванны и голый бросился к себе домой, громко крича, что нашел то, что искал; ибо на бегу он то и дело восклицал по-гречески: , .

11. Тогда, исходя из этого открытия, он, говорят, сделал два слитка одинакового веса с венцом — один из золота, другой из серебра. Сделав это, он взял объемистый сосуд, наполнил его до самых краев водой и опустил в него серебряный слиток, при погружении которого вода вытекла в количестве, равном величине слитка. Вынув затем слиток, он долил воды, отмерив ее секстарием, так, чтобы она опять сравнялась с краями, как и раньше. Так он определил, что серебро по весу соответствует известному количеству воды.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже