Квантование интересным способом возникает в случае маятника, создавая один необычный аспект. Сначала рассмотрим волновую функцию для положения качающегося груза с точно определенной энергией (так, что он находится в определенном квантовом состоянии). Потенциальная энергия груза возрастает, когда груз отклоняется в какую-либо сторону, поэтому его кинетическая энергия падает, чтобы сохранить полную энергию постоянной, и с классической точки зрения мы можем ожидать, что волновая функция имеет наибольшую амплитуду в крайних точках качания, где груз задерживается дольше. Мы уже видели одну такую волновую функцию (рис. 7.5
). Так же как для шарика между зажимами, допустимыми волновыми функциями будут те, которые согласуются с рядом величин, допускаемых качанием от одной поворотной точки до другой. Поскольку только некоторые из возможных волновых функций ведут себя подходящим образом, и каждая волновая функция соответствует определенной энергии, отсюда следует, что только некоторые энергии являются допустимыми. Оказывается, что эти допустимые энергии образуют однородную лестницу величин с разделительным интервалом между «ступеньками», который мы запишем какРис. 7.11.
Несколько первых энергетических уровней и соответствующих им волновых функций для маятника. Заметим, что уровни энергии разделены равными интервалами. Вы также можете заметить, что форма волновой функции с наименьшей энергией не похожа на формы, которые мы предполагаем у волновых функций с высокими энергиями (как, например, на рис. 7.5), поскольку маятник вероятнее всего обнаружить вблизи нулевого смещения от вертикали, а не у точек возврата. Мы можем пользоваться классическими идеями для конструирования наших представлений о волновых функциях лишь для высоких энергий.Теперь, вот удивительная черта. Предположим, что мы оттягиваем груз и отпускаем его. Он будет раскачиваться в некотором диапазоне энергий, возможно, из-за толчков молекул воздуха или неровности подставки. Поэтому его реальная волновая функция будет волновым пакетом, сформированным суперпозицией большого числа функций, подобных изображенным на иллюстрации. Волновой пакет прокатывается из стороны в сторону, двигаясь быстрее, когда маятник вертикален, и медленнее на краях размаха качаний, так же как классический маятник. Более того, и это удивительно, частота качаний — число качаний груза из стороны в сторону за секунду — в точности равна параметру
Главным выводом из этого обсуждения является то, что квантование естественно вытекает из уравнения Шредингера и что классическое поведение возникает, когда точный квантовый уровень неизвестен, и мы должны формировать волновой пакет.