Из-за этого обстоятельства некоторые химики, и особенно биологи, редко задумываются о различии между собою обратимых
и равновесных процессов. Для термодинамики обратимый процесс — это процесс, в котором приращение энтропии равно подведенному к системе количеству теплоты, деленному на температуру системы. Если же в процессе приращение энтропии больше — то такой процесс необратимый. При необратимом процессе общая энтропия мира, понимаемого как «система плюс внешняя среда», неизбежно возрастает и происходит диссипация энергии от более упорядоченных форм движения к менее упорядоченным. При этом энтропия неизолированной системы в необратимом процессе может уменьшаться за счет отвода лишней энтропии во внешнюю по отношению к системе среду.Другое свойство, по которому различаются процессы в термодинамике и кинетике, и отличное от обратимости/необратимости — это равновесность/неравновесность. Равновесные
процессы, характеризуются одинаковой скоростью перехода частиц из одного состояния (пространственного, энергетического, химического и др.) в другое в каждый момент времени. Большинство химических реакций, в том числе лежащих в основании жизни, обратимы, но только при определенных концентрациях исходных веществ и продуктов они находятся в равновесии. С другой стороны, многие равновесные процессы в термодинамике необратимы: примером могут служить изотермические процессы, когда температура системы искусственно поддерживается постоянной — хотя бы за счет обмена энергией с более массивной внешней средой (водяная или воздушная баня).Принципиальное различие между равновесными и неравновесными процессами заключается в том, что ко вторым такие категории классической термодинамики, как энтропия (а стало быть, и температура, которую определяют через энтропию, а также зависящая от температуры свободная энергия) строго говоря, применимы только для близких к равновесию состояний, ибо только в этом случае можно считать, что дифференциал энтропии является полным. К описанию систем, находящихся в состоянии, далеком от положения равновесия, классическая термодинамика применима плохо, поэтому их поведение обычно описывают с помощью кинетического подхода, который отслеживает изменения состояния частиц (молекул, атомов и др.) в каждой точке пространства-времени.
Хотя формулировка процессов эволюции живого в термодинамических категориях еще не завершена, большинство специалистов вслед за Нобелевскими лауреатами И. Р. Пригожиным
и М. Эйгеном уверены, что эволюция жизни — это история существенно неравновесных процессов в существенно открытых системах. Суть неравновесного термодинамического подхода к изучению биологической эволюции — в описании живого как совокупности самовоспроизводящихся тепловых машин (вспомним, что классическая термодинамика успешно описывает превращение хаоса в порядок в тепловых машинах).Однако, тепловые машины, изучаемые классической термодинамикой, обладали малым количеством обратных связей между своими элементами, из-за чего кинетика частиц рабочего тела (газа) при взаимодействии с элементами ходовой части машины в них описывалась линейными уравнениями, процесс случайных блужданий частиц был марковским (марковским процессом, или цепью Маркова
, называется случайный процесс, вероятности разных исходов нового этапа которого зависит только от состояния на текущем этапе, а не на предыдущих этапах) а изменение во времени термодинамических потенциалов рабочего тела — детерминированным и предсказуемым. В живых же системах обилие обратных связей приводит к нелинейности уравнений кинетики для каждого из элементов системы, немарковскому характеру случайных процессов в системе (его исход зависит от всей предыстории случайных блужданий — система «имеет память»), и непредсказуемому поведению даже усредненных параметров всей системы. По мере развития биологии ученые сталкиваются со все менее и менее детерминированными системами, несмотря на что их поведение критическим образом зависит от такого необходимого (детерминированного) явления, как естественный отбор и несмотря на то, что живые системы обладают «памятью», благодаря которой результаты этого отбора запоминаются в геноме.