Читаем Дорога на космодром полностью

Книги К. Э. Циолковского, изданные ученым в Калуге на свои скудные учительские деньги. Разнообразна их тематика и манера изложения, но во всех этих книгах сверкают самородки гениальных, фантастически точных предвидений, касается ли это атомного строения вещества, предпосылок для создания лазеров, развития зародыша в искусственной среде и особенно проблем освоения космического пространства и перспектив развития ракетостроения.

Циолковский считал, что образования вокруг звезд планетных систем не нечто невероятное и редчайшее, а закономерный этап эволюционных процессов Вселенной. Потребовались многие годы, прежде чем это предположение получило подтверждение в недавних наблюдениях, и у Циолковского появились последователи и единомышленники среди серьезных астрономов.

С треском разламывались на глазах людей легкие, похожие на этажерки самолетики, а Циолковский писал: «Аэроплан будет самым безопасным способом передвижения». Еще никто не слышал фамилий Громова и Чкалова, впереди все великие перелеты XX века, огромные резервы для совершенствования таит в себе бензиновый авиационный мотор, а Циолковский предрекает: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных, или аэропланов стратосферы».

В работах только одного 1925 года нашел я такие непомерно далекие друг от друга откровения: солнечный парус для межпланетного корабля – эта серьезная инженерная проблема активно обсуждается в наши дни; ядерный ракетный двигатель – он уже существует в опытных экземплярах; внеутробное развитие зародыша в искусственной среде – об этих работах итальянца Петруччи как о сенсации писали газеты в 60-х годах. Словно догадываясь о будущем открытии лазера, Циолковский ставил инженерную задачу сегодняшнего дня: создать космическую связь с помощью «параллельного пучка электромагнитных лучей с небольшой длиной волны, электрических или даже световых…»Не существовало ни одной счетно-решающей машины, и газеты не писали о математизации всего народного хозяйства, да и потребности тех лет не взывали еще к спасительному могуществу числовых абстракций, а Циолковский предсказывал: «…математика проникнет во все области знания». Сам он овладел высшей математикой самостоятельно (как, впрочем, всеми другими знаниями). По словам Константина Эдуардовича, как раз космонавтика и побудила его заняться высшей математикой.«…Только с момента применения реактивных приборов начнется новая великая эра в астрономии – эпоха более пристального изучения неба». – читаю у Циолковского и вспоминаю беседу с профессором Дмитрием Яковлевичем Мартыновым, директором Астрономического института имени П. К. Штернберга.

– Астрономия превращается в науку опытную, – говорил профессор. – Успехи космонавтики позволяют нам сегодня реально представить себе развитие принципиально новой отрасли науки – внеземной астрономии…

В 1958 году сотрудники Физического института Академии наук СССР им. П. Н. Лебедева впервые в мире провели опыт по исследованию инфракрасного – теплового – излучения Земли как планеты. Ракета подняла аппаратуру на высоту 500 километров, поскольку особенности инфракрасного излучения не позволяли вести широкие наблюдения не только с Земли, но даже с самолетов и аэростатов. Наиболее благоприятные условия для таких наблюдений – на высоте 200-400 километров – это высоты космонавтики. Инфракрасный портрет Земли нужен метеорологам. Космическая ИК-аппаратура позволяет им изучать пространственное изображение облаков, перемещение снежного и ледовитого покрова. Кроме того, исследования в инфракрасном диапазоне позволяют обнаружить в верхней атмосфере аэрозоли, углекислый и угарный газы, метан, кислород и судить о степени ее загрязнения, что является еще одним вкладом космонавтики в благородное дело охраны окружающей среды.

Вскоре выяснилось, что именно в инфракрасном диапазоне интенсивно «работают» ядра галактик, квазары, нестационарные галактики, квазизвездные источники – короче, объекты, к которым у астрономов накопилось особенно много вопросов, касающихся их строения, состава, механизмов энергетических превращений. В этом же диапазоне можно наблюдать скопления межзвездного газа и определять его химический состав.

Космическая инфракрасная астрономия может определить микроструктуру поверхностного слоя Луны, состав облаков Венеры или внешних слоев Юпитера. Обо всем этом можно было бы отдельную книжку написать, а ведь инфракрасная астрономия вовсе не единственная область новой астрономии космической эры.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже