Глинн и Кашин не рисовали каузальных диаграмм, но, судя по описанию их исследования, я бы нарисовал ее так, как на рис. 43. Переменная
Глинн и Кашин не стали вдаваться в природу осложнителей, но я просуммировал их в переменной
Рис. 43. Каузальная диаграмма для исследования JTPA
Сравнивая рис. 42 и 43, мы увидим, что критерий парадного входа был бы здесь применим, если бы не было стрелки от
В реальных условиях исследования, когда услуги программы доступны в любое время, подобный аргумент не годится. Тем не менее — и это особенно интересно — Глинн и Кашин протестировали критерий парадного входа. Отнесемся к этому как к тесту на сенситивность. Если мы подозреваем, что средняя стрелка обозначает очень слабое воздействие, искажение, возникающее, если считать ее отсутствующей, совсем незначительно. Судя по их результатам, именно так дело и обстояло. Приняв определенные разумные допущения, Глинн и Кашин получили неравенства, по которым определили, была ли поправка чрезмерной или недостаточной и насколько. Наконец, они сравнили предсказания черного хода и парадного входа с результатами рандомизированного контролируемого исследования, которое проводилось в то же самое время. Результаты впечатлили. Оценки с помощью критерия черного хода (с поправками по таким известным конфаундерам, как возраст, раса и регион) оказались совершенно неверны, они отличались от экспериментальных результатов на сотни тысяч долларов. Это именно та картина, которая наблюдается, если имеется нераспознанный конфаундер. Критерий черного хода не способен внести по нему поправки. Тем не менее оценки парадного входа убрали почти все воздействия со стороны переменной
Изыскания Глинна и Кашина показывают, почему поправки парадного входа оказываются столь мощным инструментом: он позволяет нам снимать осложнения по таким переменным, по которым мы не можем получить наблюдений (например, в случае мотивации), включая те, которые даже не можем никак назвать. Рандомизированные контролируемые исследования считаются золотым стандартом оценок каузального воздействия ровно по тем же причинам. Поскольку оценки парадного входа равноценны, к тому же обладают дополнительным преимуществом, позволяя наблюдать поведение людей в их привычной обстановке, а не в условиях лаборатории, я не удивлюсь, если когда-нибудь этот метод составит серьезную конкуренцию РКИ.
Математика
Главная цель обеих обсужденных выше поправок — вычислить эффект интервенции,