Читаем Двигатели жизни полностью

Электрон, вытолкнутый в реакционном центре из молекулы хлорофилла частицей света, оставляет после себя «дыру», и молекула оказывается положительно заряженной. Чтобы заполнить пустоту, молекула хлорофилла забирает электрон у близлежащих молекул. В случае организмов, выделяющих кислород, таких как сине-зеленые водоросли, эукариотические водоросли и все высшие растения, эти электроны поступают от четверки атомов марганца, удерживаемых специальным приспособлением с одной стороны мембраны. После того как они пожертвовали хлорофиллу свои электроны, эти атомы марганца также нуждаются в заполнении своих электронных пустот. Непосредственно рядом с собой они находят воду и, один за другим, извлекают четыре электрона из двух молекул воды, используя по очереди энергию четырех толчков, полученных от фотонов. По мере того как вода теряет электроны, от нее отделяются и протоны, и в конце концов кислород остается сам по себе и пускается на поиск новых электронов. Кислород славится своим умением находить электроны в природе, и именно поэтому мы называем молекулу, желающую отнять электроны у другой молекулы, окислителем. В фотосинтетических реакционных центрах другого типа источником электронов может быть сероводород (газ с запахом тухлых яиц), еще где-то – одна из форм ионов железа или углеводы (CH2O). В любом случае в конечном счете все источники электронов расположены вне организма, а основным применением всех этих электронов является производство сахаров.

Каким бы ни был источник, электрон неизменно направляется по одному пути, а протон – по другому. Протон, заряженный положительно, тоже может быть использован для выполнения работы. Вначале он помещается по одну сторону мембраны. Мембрана препятствует ему просто перейти на другую сторону, и в конечном счете оказывается, что по одну сторону мембраны расположено гораздо больше положительно заряженных протонов, чем по другую. По существу, это напоминает миниатюрную электрическую батарею, которая может быть использована для производства АТФ. Однако как протоны могут выполнять двойную функцию – как они могут воссоединяться с электронами, чтобы производить водород, этот элемент, необходимый для производства органических соединений? Давайте посмотрим, как работает это микроскопическое устройство.

Вспомним, что реакционные центры встроены в мембраны и что мембраны являются барьерами для свободного движения протонов и других заряженных молекул. После того как из воды или сероводорода извлекаются электроны, протоны сосредотачиваются по одну сторону мембраны. Мембрана представляет собой сплошной лист, нечто наподобие хлеба-питы с протонами, вложенными в карман вместо начинки. Проработав на солнечном свету всего несколько минут, фотосинтетические реакционные центры могут отложить внутрь этого кармана в 1000 раз больше протонов, чем находится во внешней среде; это означает, что положительный заряд по одну сторону мембраны в 1000 раз мощнее, чем по другую. Эти протоны переходят на противоположную сторону мембраны через механизм фактора сопряжения, поворачивая мотор и вырабатывая АТФ. Этот процесс происходит в каждом фотосинтезирующем организме; он является основным биологическим источником существующей в природе электрической энергии.

Однако что же происходит с протонами после того, как они проходят через фактор сопряжения и оказываются по другую сторону мембраны? Они встречаются с электронами, одновременно связываясь с другой модифицированной нуклеиновой кислотой. Эта молекула носит неблагозвучное имя никотинамидадениндинуклеотидфосфат, или НАДФ. Когда к НАДФ добавляются протон и электрон, молекула восстанавливается до НАДФН. Функция НАДФН заключается в том, чтобы транспортировать водород внутри клетки с целью его использования для производства органических соединений. Этот процесс может показаться чрезмерно усложненным, однако если бы клетка вырабатывала водород в свободном виде, этот газ, молекулы которого физически очень малы, мог бы с легкостью покинуть клетку. Путем разделения двух составляющих водорода – электрона и протона – и затем воссоединения их в составе такой крупной молекулы, как НАДФ, клетка может удерживать водород при себе. В фотосинтезирующих организмах атомы водорода, прикрепленные к НАДФН, в конечном счете используются для преобразования углекислого газа (CO2) в сахара, которые большинство прочих живых существ на этой планете используют для того, чтобы получать энергию.

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука