Читаем Двигатели жизни полностью

В детстве нам всем довелось узнать, что растения производят кислород, которым мы дышим, и большинство из нас продолжают жить, больше об этом не задумываясь. Однако каменная летопись показывает, что наземные растения появились на этой планете всего лишь около 450 млн лет тому назад. Если возраст Земли составляет по меньшей мере 4,55 млрд лет, означает ли это, что до 450-миллионной отметки кислорода на ней не было?

Как я уже рассказывал, у микроорганизмов выработался сложный наномеханизм, позволяющий им расщеплять воду при помощи солнечной энергии, за миллиарды лет до возникновения наземных растений. Однако хотя это и может показаться удивительным, мы до сих пор имеем очень неясное представление о том, когда появился первый

микроорганизм, обладающий таким свойством. До нашего времени сохранилась лишь одна прокариотическая группа фотосинтезирующих микроорганизмов, способных производить кислород, – цианобактерии.

Эволюция цианобактерий до сих пор остается загадкой. Все они генетически тесно связаны между собой и являются единственными среди прокариотов производящими зеленый пигмент, хлорофилл а

, используемый всеми образующими кислород организмами для расщепления воды. Однако что, наверное, наиболее интересно, так это то, что они являются единственными фотосинтезирующими прокариотами, имеющими два различных типа фотосинтетических реакционных центров. Один из них очень напоминает реакционный центр, найденный у фотосинтезирующих пурпурных несерных бактерий, но последние не способны расщеплять воду при помощи солнечной энергии и, следовательно, не вырабатывают кислород. Они используют световую энергию, чтобы расщеплять газообразный водород на протоны и электроны и впоследствии производить сахара. Другой тип реакционных центров унаследован от фотосинтезирующих зеленых серных бактерий, наподобие тех, которых я изучал в глубинной части верхнего слоя водной толщи Черного моря. Эти организмы также не расщепляют воду и не вырабатывают кислород; они расщепляют сероводород, используя световую энергию. Как пурпурные несерные, так и зеленые серные бактерии чрезвычайно чувствительны к присутствию кислорода – при контакте с этим газом они теряют свои фотосинтетические способности. Представляется, реакционные центры двух этих очень различных организмов каким-то образом сумели соединиться в одном организме. Как это случилось, остается неясным, однако, скорее всего, это стало следствием многократного обмена генами между различными видами микроорганизмов.

Получившаяся в результате химера, где в зарождающуюся цианобактерию оказались генетически встроены два различных типа реакционных центров, подверглась ряду дальнейших эволюционных преобразований. К реакционному центру, полученному от пурпурных бактерий, был добавлен белок, содержащий четверку атомов марганца, – впоследствии эта конструкция превратится в реакционный центр, где будет расщепляться вода. Взятую у бактерий пигментную систему новая клетка со временем модифицировала, чтобы производить хлорофилл, что позволило реакционному центру использовать свет на более высоких энергетических уровнях для расщепления воды. Второй реакционный центр, унаследованный от зеленых серных бактерий, также претерпел изменения, и модифицированный наномеханизм позволил ему функционировать в присутствии кислорода. Явившаяся в результате новая конструкция, составленная из подобранных где попало наномеханизмов, отличается чрезвычайной сложностью: она состоит из более чем 100 белков и других компонентов, разделенных на два реакционных центра, которые работают по очереди.

Давайте снова обратимся к уже использовавшемуся сравнению электронов с пассажирами в метро. В первом реакционном центре свет в конечном счете забирает электроны у водорода в воде и везет их через ряд промежуточных станций. Электроны прибывают ко второму реакционному центру, где их, снова при помощи энергии света, с большим усилием запихивают в набитый битком поезд, который отправляется через другой ряд промежуточных станций, после чего электроны, наконец, достигают пункта своего назначения. Этим пунктом назначения является маленькая древняя молекула, называемая ферредоксин, состоящая из комплекса железа и серы, идентичного тому, что содержится в минерале пирите, или «золоте дураков». Здесь с помощью специального фермента электрон, наконец, встречает своего партнера – протон, и они образуют НАДФН. Вспомним, что НАДФН является транспортировщиком водорода, и прикрепленный к НАДФН водород может быть использован для превращения углекислого газа в органическое вещество. Весь этот механизм по преобразованию энергии требует участия около 150 генов. Это наисложнейший механизм такого рода, существующий в природе.

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука