Читаем Эффективное использование STL полностью

Одним из ключевых преимуществ является семантическая сила стандартных имен. В STL существует 70 имен алгоритмов, с учетом перегрузки (overloading) получается более 100 различных шаблонов функций. Каждый алгоритм выполняет четко определенную задачу, и вполне логично ожидать, что профессиональный программист С++ знает эти задачи (или легко найдет нужную информацию). Таким образом, при виде вызова transform программист понимает, что некоторая функция применяется ко всем объектам в интервале, а результат куда-то записывается. При виде вызова replace_if он знает, что программа модифицирует все объекты интервала, удовлетворяющие некоторому предикату. Вызов partition наводит на мысль о том, что объекты интервала перемещаются с группировкой всех объектов, удовлетворяющих предикату (см. совет 31). Имена алгоритмов STL несут большую семантическую нагрузку и более четко выражают смысл происходящего, чем любые циклы.

При виде цикла for, while и do программист знает только одно — программа многократно выполняет некоторые действия. Чтобы получить хотя бы примерное представление о происходящем, необходимо изучить тело цикла. С алгоритмами дело обстоит иначе, сам вызов алгоритма характеризует суть происходящего. Конечно, для полноценного понимания необходимо проанализировать аргументы, передаваемые алгоритму, но обычно это требует меньшей работы, чем анализ обобщенной циклической конструкции.

Проще говоря, имена алгоритмов информативны, а ключевые слова for, while или do — нет. Впрочем, это относится практически ко всем компонентам стандартных библиотек С и С++. Никто не запрещает вам написать собственную реализацию strlen, memset или bsearch, но вы этого не делаете. Почему? Во-первых, кто-то уже сделал это за вас, и нет смысла повторять уже выполненную работу; во-вторых, имена этих функций стандартны, и все знают, что они делают; в-третьих, можно предположить, что автор библиотеки знает приемы оптимизации, недоступные для вас, и отказываться от возможного повышения эффективности было бы неразумно. А раз вы не пишете собственные версии strlen и т. д., то было бы нелогично программировать циклы, дублирующие функциональность готовых алгоритмов STL.

На этом я бы хотел завершить данный совет, поскольку финал выглядит довольно убедительно. К сожалению, тема не поддается столь однозначной трактовке.

Действительно, имена алгоритмов информативнее простых циклов, но четкая формулировка действий, выполняемых при каждой итерации, иногда бывает нагляднее вызова алгоритма. Допустим, нам потребовалось найти первый элемент вектора, значение которого лежит в заданном диапазоне <х,у>. В цикле это делается так:

vector v;

int х,у:

vector::iterator i=v.begin(); //Перебирать элементы, начиная

for(;i!=v.end();++i){//с v.begin(). до нахождения нужного

if(*i>x&&*i

}

//После завершения цикла

//i указывает на искомый элемент

//или совпадает с v.end()

То же самое можно сделать и при помощи find_if, но для этого придется воспользоваться нестандартным адаптером объекта функции — например, compose2 из реализации SGI (см. совет 50):

vector::iterator i =

find_if(v.begin(), v.end(), // Найти первое значение val.

compose2(logical_and0, // для которого одновременно

bind2nd(greater(),x).// истинны условия

bind2nd(less(),y))): // val>x. и val

Но даже если бы нестандартные компоненты не использовались, многие программисты полагают, что вызов алгоритма значительно уступает циклу по наглядности, и я склонен с ними согласиться (см. совет 47).

Вызов find_if можно было бы упростить за счет выделения логики проверки в отдельный класс функтора.

template

class BetweenValues:

public unary_function{// См. совет 40

public:

BetweenValues(const T& lowValue, const T& highValue)

:lowVal(lowValue),highVal(highValue) {}

bool operator() (const T& val) const

{

return val>lowVal&&val

}

private:

T lowVal;

T highVal;

};

vector iterator i = find_if(v.begin().v.end(),

BetweenValues(x,y));

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных