Читаем Эффективное использование STL полностью

v.push_back(new Widget); // на динамически созданные объекты Widget

Поработав с v в течение некоторого времени, вы решаете избавиться от объектов Widget, не сертифицированных функцией Widget, поскольку они вам не нужны. С учетом рекомендаций, приведенных в совете 43 (по возможности использовать алгоритмы вместо циклов), и того, что говорилось в совете 32 о связи remove и erase, возникает естественное желание использовать идиому erase-remove, хотя в данном случае используется алгоритм remove_if:

v.erase(remove_if(v.begin(), v.end(),// Удалить указатели на объекты

not1(mem_fun(&Widget::isCertified))). //Widget, непрошедшие v.end());// сертификацию.

// Информация о mem_fun

// приведена в совете 41.

Внезапно у вас возникает беспокойство по поводу вызова erase, поскольку вам смутно припоминается совет 7 — уничтожение указателя в контейнере не приводит к удалению объекта, на который он ссылается. Беспокойство вполне оправданное, но в этом случае оно запоздало. Вполне возможно, что к моменту вызова erase утечка ресурсов уже произошла. Прежде чем беспокоиться о вызове erase, стоит обратить внимание на remove_if.

Допустим, перед вызовом remove_if вектор v имеет следующий вид:


После вызова remove_if вектор выглядит примерно так (с итератором, возвращаемым при вызове remove_if):



Если подобное превращение кажется непонятным, обратитесь к совету 32, где подробно описано, что происходит при вызове remove (в данном случае — remove_if).

Причина утечки ресурсов очевидна. «Удаленные» указатели на объекты В и С были перезаписаны «оставшимися» указателями. На два объекта Widget не существует ни одного указателя, они никогда не будут удалены, а занимаемая ими память расходуется впустую.

После выполнения remove_if и erase ситуация выглядит следующим образом:


Здесь утечка ресурсов становится особенно очевидной, и к настоящему моменту вам должно быть ясно, почему алгоритмы remove и его аналоги (remove_if и unique) не рекомендуется вызывать для контейнеров, содержащих указатели на динамически выделенную память. Во многих случаях разумной альтернативой является алгоритм partition (см. совет 31).

Если без remove никак не обойтись, одно из решений проблемы заключается в освобождении указателей на несертифицированные объекты и присваивании им null перед применением идиомы erase-remove с последующим удалением из контейнера всех null-указателей:

void delAndNullifyUncertified(Widget*& pWidget) {

if(!pWidget()->isCertified()){ //Если объект *pWidget не сертифицирован,

delete pWidget; //удалить указатель

pWidget=0;//и присвоить ему null

}

for_each(v.begin(),.v.end(), // Удалить и обнулить все указатели на

delAndNullifyUncertified); // все указатели на объекты, не прошедшие

v.erase(remove(v.begin(),v.end(), // Удалить из v указатели null;

static_cast(0)), //0 преобразуется в указатель, чтобы С++

v.end()); //правильно определял тип третьего параметра


Приведенное решение предполагает, что вектор не содержит null-указателей, которые бы требовалось сохранить. В противном случае вам, вероятно, придется написать собственный цикл, который будет удалять указатели в процессе перебора. Удаление элементов из контейнера в процессе перебора связано с некоторыми тонкостями, поэтому перед реализацией этого решения желательно прочитать совет 9.

Если контейнер указателей заменяется контейнером умных указателей с подсчетом ссылок, то все трудности, связанные с remove, исчезают, а идиома erase-remove

может использоваться непосредственно:

template class RCSP{..}; // RCSP = "Reference Counting Smart Pointer"

typedef RCSP RCSPW; // RCSPW = "RCSP to Widget"

vector v;

v.push_back(RCSPW(new Widget)):

v. erase(remove_if(v.begin() .v.end(),

not1(mem_fun(&Widget::isCertified))).

v.end()):


Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных