Читаем Эйнштейн (Жизнь, Смерть, Бессмертие) полностью

Вернемся к геометрическим инвариантам. Как было уже сказано, геометрия, которую проходят в средней школе, основана на допущении: длина отрезка не меняется при его переносе. Эта длина вычисляется с помощью некоторой формулы по заданным координатам концов отрезка. Координаты, как уже говорилось, меняются в зависимости от выбора системы отсчета, но длина отрезка остается неизменной. Она служит инвариантом координатных преобразований. Мы можем представить себе иную формулу, связывающую длину отрезка с координатами его концов. Мы можем изменить и другие основные допущения геометрии и при этом не приходим к противоречиям. Такая возможность избирать различные исходные допущения и не приходить при этом к противоречиям нанесла сильный удар идее априорного пространства.

Кант считал априорными, присущими сознанию, независимыми от опыта соотношения геометрии Евклида. В III в. до н. э. Евклид вывел всю совокупность теорем геометрии из нескольких независимых одна от другой аксиом. Среди последних находился так называемый постулат параллельных, эквивалентный утверждению, что из точки, взятой вне прямой, можно провести только одпу прямую, не пересекающуюся с данной. Из этого постула

74

та выводится равенство суммы углов треугольника двум прямым углам, параллельность перпендикуляров к одной и той же прямой и ряд других теорем. Из него выводится, в частности, формула, позволяющая найти длину отрезка, если заданы координаты его концов.

В 1826 г. Н. И. Лобачевский доказал, что может существовать иная, неевклидова геометрия, отказывающаяся от постулата параллельных. В геометрии Лобачевского через точку, взятую вне прямой, можно провести бесчисленное множество прямых, не пересекающихся с данной. Сумма углов треугольника в геометрии Лобачевского меньше двух прямых углов, перпендикуляры к прямой расходятся. Длина отрезка определяется в ней по координатам концов иначе, чем в геометрии Евклида.

Тридцать лет спустя Бернгард Риман заменил евклидов постулат параллельных утверждением, что через точку, взятую вне прямой, нельзя провести ни одной прямой, не пересекающей данную прямую. Иначе говоря, в геометрии Римана параллельных прямых нет. В геометрии Римана сумма углов треугольника нe равна двум прямым углам, как в геометрии Евклида, и не меньше их, как в геометрии Лобачевского, а больше двух прямых углов. Перпендикуляры к прямой не параллельны и не расходятся; в геометрии Римана они сходятся. Длина отрезка определяется по координатам его концов иначе, чем в геометрии Евклида, и иначе, чем в геометрии Лобачевского.

Эти парадоксальные утверждения геометрии Лобачевского и геометрии Римана приобретают простой и наглядный смысл, если мы нарисуем геометрические фигуры не на плоскости, а на кривой поверхности. Возьмем поверхность сферы. Роль прямых на плоскости здесь будут играть кратчайшие дуги, примером которых могут служить дуги меридианов на поверхности Земли или дуги экватора. Но каждые два меридиана обязательно пересекутся, следовательно, на поверхности сферы нельзя найти параллельные кратчайшие линии. Перпендикуляры к экватору - ими как раз и являются меридианы сходятся в полюсе. Нарисовав на поверхности сферы треугольник, образованный дугой экватора и двумя меридианами, т.е. с вершиной в полюсе, мы убедимся, что сумма углов этого треугольника больше двух прямых углов. Длина кратчайшего отрезка на поверхности сферы определяется иначе, иной формулой, чем длина кратчайшего отрезка на плоскости.

75

Можно найти кривую поверхность, па которой, при замене прямых кратчайшими на этой поверхности кривыми, так называемыми геодезическими линиями, все соотношения подчиняются геометрии Лобачевского: через точку, взятую вне такой линии, можно провести множество геодезических линий, не пересекающихся с данной, сумма углов образованного такими линиями треугольника меньше двух прямых углов, перпендикуляры расходятся и т.д.

Можно заменить переход от евклидовой геометрии к неевклидовой геометрии на плоскости - искривлением этой плоскости.

Но как представить себе неевклидову геометрию в пространстве переход от трехмерной евклидовой геометрии к трехмерной неевклидовой геометрии? Зрительного образа искривления трехмерного пространства мы не находим. Но мы можем считать искривлением трехмерного пространства всякий переход от евклидовых геометрических соотношений в этом пространстве к неевклидовым.

Когда Эйнштейн знакомился с евклидовой и неевклидовой геометрией на лекциях по математике в Цюрихе, он не представлял себе, какие именно геометрические понятия позволят найти и описать новую физическую теорию. Только через много лет он увидел, что интересовавшая его с отрочества проблема относительности движения имеет непосредственное отношение к координатным преобразованиям и кривизне пространства.

Для этого необходимо было придать понятию пространства более широкий смысл.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

Энциклопедии / Образование и наука / Словари и Энциклопедии / История
Медвежатник
Медвежатник

Алая роза и записка с пожеланием удачного сыска — вот и все, что извлекают из очередного взломанного сейфа московские сыщики. Медвежатник дерзок, изобретателен и неуловим. Генерал Аристов — сам сыщик от бога — пустил по его следу своих лучших агентов. Но взломщик легко уходит из хитроумных ловушек и продолжает «щелкать» сейфы как орешки. Наконец удача улабнулась сыщикам: арестована и помещена в тюрьму возлюбленная и сообщница медвежатника. Генерал понимает, что в конце концов тюрьма — это огромный сейф. Вот здесь и будут ждать взломщика его люди.

Евгений Евгеньевич Сухов , Евгений Николаевич Кукаркин , Евгений Сухов , Елена Михайловна Шевченко , Мария Станиславовна Пастухова , Николай Николаевич Шпанов

Приключения / Боевик / Детективы / Классический детектив / Криминальный детектив / История / Боевики