Читаем Экспериментальная психология: конспект лекций полностью

К вторичным относят такие методы статистической обработки, с помощью которых на базе первичных данных выявляют скрытые в них статистические закономерности. Вторичные методы можно подразделить на способы оценки значимости различий и способы установления статистических взаимосвязей.

Способы оценки значимости различий. Для сравнения выборочных средних величин, принадлежащих к двум совокупностям данных, и для решения вопроса о том, отличаются ли средние значения статистически достоверно друг от друга, используют t-критерий Стьюдента. Его формула выглядит следующим образом:

где М1, М2 – выборочные средние значения сравниваемых выборок, m1, m2 – интегрированные показатели отклонений частных значений из двух сравниваемых выборок, вычисляются по следующим формулам:

где D1, D2 – дисперсии первой и второй выборок, N1, N2 – число значений в первой и второй выборках.

После вычисления значения показателя t

по таблице критических значений (см. Статистическое приложение 1), заданного числа степеней свободы (N1 + N2 – 2) и избранной вероятности допустимой ошибки (0,05, 0,01, 0,02, 001 и т.д.) находят табличное значение t. Если вычисленное значение t больше или равно табличному, делают вывод о том, что сравниваемые средние значения двух выборок статистически достоверно различаются с вероятностью допустимой ошибки, меньшей или равной избранной.

Если в процессе исследования встает задача сравнить неабсолютные средние величины, частотные распределения данных, то используется ?2критерий (см. Приложение 2). Его формула выглядит следующим образом:

где Pk – частоты распределения в первом замере, Vk

– частоты распределения во втором замере, m – общее число групп, на которые разделились результаты замеров.

После вычисления значения показателя ?2по таблице критических значений (см. Статистическое приложение 2), заданного числа степеней свободы (m – 1) и избранной вероятности допустимой ошибки (0,05, 0,0 ?2t больше или равно табличному) делают вывод о том, что сравниваемые распределения данных в двух выборках статистически достоверно различаются с вероятностью допустимой ошибки, меньшей или равной избранной.

Для сравнения дисперсий двух выборок используется F-критерий Фишера. Его формула выглядит следующим образом:


где D1, D

2 – дисперсии первой и второй выборок, N1, N2 – число значений в первой и второй выборках.

После вычисления значения показателя F по таблице критических значений (см. Статистическое приложение 3), заданного числа степеней свободы (N1 – 1, N2 – 1) находится Fкр. Если вычисленное значение F

больше или равно табличному, делают вывод о том, что различие дисперсий в двух выборках статистически достоверно.

Способы установления статистических взаимосвязей. Предыдущие показатели характеризуют совокупность данных по какому-либо одному признаку. Этот изменяющийся признак называют переменной величиной или просто переменной. Меры связи выявляют соотношения между двумя переменными или между двумя выборками. Эти связи, или корреляции, определяют через вычисление коэффициентов корреляции. Однако наличие корреляции не означает, что между переменными существует причинная (или функциональная) связь. Функциональная зависимость – это частный случай корреляции. Даже если связь причинна, корреляционные показатели не могут указать, какая из двух переменных является причиной, а какая – следствием. Кроме того, любая обнаруженная в психологических исследованиях связь, как правило, существует благодаря и другим переменным, а не только двум рассматриваемым. К тому же взаимосвязи психологических признаков столь сложны, что их обусловленность одной причиной вряд ли состоятельна, они детерминированы множеством причин.

По тесноте связи можно выделить следующие виды корреляции: полная, высокая, выраженная, частичная; отсутствие корреляции. Эти виды корреляций определяют в зависимости от значения коэффициента корреляции.

При полной корреляции его абсолютные значения равны или очень близки к 1. В этом случае устанавливается обязательная взаимозависимость между переменными. Здесь вероятна функциональная зависимость.

Высокая корреляция устанавливается при абсолютном значении коэффициента 0,8–0,9. Выраженная корреляция считается при абсолютном значении коэффициента 0,6–0,7. Частичная корреляция существует при абсолютном значении коэффициента 0,4–0,5.

Абсолютные значения коэффициента корреляции менее 0,4 свидетельствуют об очень слабой корреляционной связи и, как правило, в расчет не принимаются. Отсутствие корреляции констатируется при значении коэффициента 0.

Перейти на страницу:

Похожие книги