Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Хотя у нас нет устройств, с помощью которых можно было бы производить измерения на столь малых расстояниях или воспроизводить столь высокие температуры, за время, прошедшее с 1974 г., экспериментаторам удалось существенно уточнить значения интенсивности трех негравитационных взаимодействий в обычных условиях. Эти данные, являющиеся начальными точками на трех кривых изменения интенсивности взаимодействий, показанных на рис. 7.1, представляют собой исходные данные для квантово-механических расчетов, выполненных Джорджи, Куинн и Вайнбергом. В 1991 г. Уго Амальди из ЦЕРНа, Вим де Боер и Герман Фюрстенау из университета Карлсруэ в Германии пересчитали результаты Джорджи, Куинн и Вайнберга с использованием новых экспериментальных данных и продемонстрировали два замечательных факта. Во-первых, интенсивность трех негравитационных взаимодействий почти (но не абсолютно) одинакова в масштабе малых расстояний (соответственно, высоких энергий и высоких температур), как показано на рис. 7.2.

Рис. 7.2. Уточнение расчета интенсивностей взаимодействий показало, что без суперсимметрии они очень близки, но не совпадают.

Во-вторых, это незначительное, но несомненное различие в интенсивности исчезает

при включении суперсимметрии. Причина состоит в том,  что  новые частицы-суперпартнеры, существования которых требует суперсимметрия, дают дополнительные квантовые флуктуации достаточной величины, чтобы интенсивности взаимодействий стали одинаковыми.

Для большинства физиков чрезвычайно трудно поверить в то, что природа могла выбрать взаимодействия таким образом, чтобы на микроскопическом уровне они были почти, но не в точности равны. Это все равно, как если бы вы собирали головоломку и увидели, что последний фрагмент имеет немного не ту форму, которая позволила бы ему занять последнее остающееся свободным место. Суперсимметрия искусно изменяет форму этого фрагмента, и все части головоломки встают на свои места.

Другой аспект этих последних достижений связан с тем, что они дают возможный ответ на вопрос, почему до сих пор не открыта ни одна частица-суперпартнер. Расчеты, подтвердившие равенство интенсивности взаимодействий, а также ряд других исследований, выполненных физиками, показали, что частицы-суперпартнеры должны быть намного тяжелее, чем все открытые до сих пор частицы. Хотя точный прогноз дать пока невозможно, проведенные исследования показывают, что частицы-суперпартнеры должны быть как минимум в тысячу раз тяжелее протона. Это объясняет, почему такие частицы до сих пор не обнаружены: даже самые современные ускорители не способны развивать такие энергии. В главе 9 мы вернемся к вопросу о перспективах экспериментальной проверки того, является ли суперсимметрия реальным свойством нашего мира.

Конечно, приведенные доводы в пользу того, чтобы принять суперсимметрию или, по крайней мере, не отвергать такой возможности, не являются неоспоримыми. Мы описали, как суперсимметрия придает нашим теориям наиболее симметричный вид, но вы можете возразить, что мироздание, возможно, вовсе не стремится принять наиболее симметричную форму, достижимую с математической точки зрения. Мы обратили ваше внимание на важный технический момент, состоящий в том, что суперсимметрия избавляет нас от необходимости детальной подгонки параметров стандартной модели для преодоления ряда тонких проблем в квантовой теории, но вы можете возразить, что истинная теория, описывающая явления природы, вполне может балансировать на тонкой грани между непротиворечивостью и саморазрушением. Мы показали, что на ничтожно малых расстояниях суперсимметрия изменяет интенсивность трех негравитационных взаимодействий в точности так, чтобы они могли слиться в одно великое объединенное взаимодействие, но вы, опять же, можете возразить, что в устройстве мироздания нет ничего, что диктовало бы необходимость совпадения интенсивности этих взаимодействий на микроскопическом масштабе. Наконец, вы можете предположить, что частицы-суперпартнеры до сих пор не обнаружены просто потому, что наша Вселенная не является суперсимметричной и, следовательно, частицы-суперпартнеры не существуют.

Никто не может опровергнуть ни одно из этих возражений. Однако доводы, говорящие в пользу суперсимметрии, необычайно усиливаются, если мы рассмотрим ее роль в теории струн.

Суперсимметрия в теории струн

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика