Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вследствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймет, что речь идет о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведет ее на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разными языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского к китайскому и обратно не приводит к появлению новых физических результатов.

Нетривиальными являются те примеры дуальности, в которых различные описания одной и той же ситуации приводят к различным взаимодополняющим физическим выводам и математическим методам исследования. На самом деле, выше мы уже дважды сталкивались с такими примерами. В главе 10 обсуждалось, что теория струн во вселенной с циклическим измерением радиусом R

может быть с тем же успехом описана в рамках теории во вселенной с циклическим измерением радиусом 1/R. Геометрически два варианта различны, но физические явления оказываются совершенно идентичными. Второй пример — зеркальная симметрия. Имеются два различных многообразия Калаби-Яу в дополнительных шести пространственных измерениях, но две вселенные, кажущиеся на первый взгляд совершенно разными, имеют одни и те же физические свойства. Существенным отличием от перевода с одного языка на другой является то, что эти дуальные описания
могут привести к новым физическим результатам, например, к предсказаниям минимального размера циклического измерения или переходов с изменением топологии в теории струн.

В своей лекции на конференции «Струны-95» Виттен привел пример нового и фундаментального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращенных в сторону одного теоретического фундамента.

До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шепотом — настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развитием теории струн появляются все более убедительные свидетельства в пользу того, что все пять теорий струн являются дуальными. Кроме того, как будет пояснено ниже, из доводов Виттена следует, что в физике есть место и для шестой теории.

Эти результаты тесно переплетены с вопросами о применимости методов теории возмущений, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие слабой связи, т.е. если константа связи меньше 1. Долгое время физики опирались на теорию возмущений, в рамках которой невозможна постановка вопроса о том, какими будут свойства любой из теорий, если окажется, что константа связи в этой теории больше 1, т.е. связь будет сильной. По утверждениям Виттена и других исследователей, сейчас можно ответить на этот важнейший вопрос. Их результаты убедительно свидетельствуют о том, что для сильной связи в каждой из теорий (включая шестую теорию, которую мы опишем ниже) есть дуальное описание в терминах слабой связи в другой теории, и наоборот.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика