Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Оказывается, есть три важнейших пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, все более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод оказывает огромное влияние на наше понимание структуры Вселенной в сам момент Большого взрыва, для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие дуальности малых и больших радиусов (в его тесной связи с существованием минимального размера) в теории струн, как мы вскоре увидим, крайне важно и в космологии. И, наконец, число пространственно-временных измерений в теории струн больше четырех, поэтому космология должна описывать эволюцию всех этих измерений. Обсудим эти три пункта более подробно.

В начале был комок планковских размеров

В конце 1980-х гг. Роберт Бранденбергер и Кумрун Вафа сделали первые важные шаги к пониманию того, к каким изменениям в следствиях из стандартной космологической модели приведет использование теории струн. Они пришли к двум важным выводам. Во-первых, по мере движения назад к моменту Большого взрыва температура продолжает расти до момента, когда размеры Вселенной по всем направлениям сравняются с планковской длиной. Но в этот момент температура достигнет максимума и начнет уменьшаться.

На интуитивном уровне нетрудно понять причину этого явления. Предположим для простоты (следуя Бранденбергеру и Вафе), что все пространственные измерения Вселенной циклические. При движении назад во времени радиус каждой окружности сокращается, а температура Вселенной увеличивается. Но из теории струн мы знаем, что сокращение радиусов сначала до и затем ниже значений планковской длины физически эквивалентно уменьшению радиусов до планковской длины, сменяющемуся затем их последующим увеличением. А так как температура при расширении Вселенной падает, то безрезультатные попытки сжать Вселенную до размеров, меньших планковской длины, приведут к прекращению роста температуры и ее дальнейшему снижению. Подробные вычисления Бранденбергера и Вафы подтверждают, что так оно и происходит на самом деле.

В результате Бранденбергер и Вафа пришли к следующей космологической картине: сначала все пространственные измерения в теории струн плотно свернуты до минимальных размеров, грубо говоря, до планковской длины. Температура и энергия высоки, но не бесконечны: парадоксы начальной точки нулевого размера в теории струн решены. В начальный момент существования Вселенной все пространственные измерения теории струн совершенно равноправны и полностью симметричны: все они свернуты в многомерный комок планковских размеров. Далее, согласно Бранденбергеру и Вафе, Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени три пространственных измерения отбираются для последующего расширения, а остальные сохраняют исходный планковский размер. Затем эти три измерения отождествляются с измерениями в сценарии инфляционной космологии и в процессе эволюции, изображенной на рис. 14.1

, принимают наблюдаемую ныне форму.

Почему три?

Здесь сразу же возникает вопрос: в чем причина того, что при понижении симметрии для расширения отбираются ровно три пространственных измерения? Иными словами, кроме имеющегося экспериментального факта, что лишь три пространственных измерения расширились до наблюдаемого огромного размера, есть ли в теории струн фундаментальный принцип, объясняющий почему не расширилось никакое другое число измерений (четыре, пять, шесть и т.д.) или даже, что более симметрично, все пространство? Бранденбергер и Вафа предложили возможное объяснение. Вспомним, что дуальность больших и малых радиусов в теории струн основана на том, что если измерение является циклическим, на него может наматываться струна. Бранденбергер и Вафа осознали, что такие намотанные струны могут сдерживать расширение измерений, на которые они намотаны, подобно резиновым лентам, обернутым вокруг велосипедной камеры. С первого взгляда может показаться, что в результате все измерения будут скованы, так как струны могут наматываться, и наматываются, на любое из них. Но тут есть лазейка: если намотанная струна вдруг встретит своего анти-струнного партнера (грубо говоря, струну, намотанную в другом направлении), обе струны моментально аннигилируют и образуют ненамотанную струну. Если этот процесс будет достаточно активным, то будет уничтожено достаточно много «резиновой ленты», и измерения смогут расширяться. Бранденбергер и Вафа предположили, что снижение сдерживающего действия намотанных струн может иметь место лишь в случае трех пространственных измерений. И вот почему.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика