Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую — Джиму, который будет измерять радиус. Чтобы увидеть все наилучшим образом, взглянем на круг с высоты птичьего полета, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что ее
Рис. 3.1.
Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому ее длина не уменьшается.Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить ее, совмещая начало с концом,
Ну, а что насчет радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полета, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому
Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное еще древними греками правило, согласно которому для любой окружности это отношение в точности равно 2?
Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривленной или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило,
В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности
Рис. 3.2.
Окружность, нарисованная на поверхности сферы