Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично, расхождения между общей теорией относительности Эйнштейна — теорией гравитации, совместимой со специальной теорией относительности, — и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них.[24]

Мы любуемся звездами по ночам, но они, конечно, остаются на небе и днем. В это время мы обычно не видим их, потому что их далекие, точечные огни затмеваются светом Солнца. Однако во время солнечных затмений Луна временно заслоняет часть света, идущего си Солнца, и удаленные звезды становятся видимыми и днем. Тем не менее, присутствие Солнца продолжает оказывать влияние на испущенный ими свет. Свет от некоторых отдаленных звезд на своем пути к Земле должен пройти вблизи Солнца. Общая теория относительности Эйнштейна утверждает, что Солнце искривляет пространство и время, и что эта деформация оказывает влияние на траекторию идущего от звезд света. В конце концов, фотоны, излученные далекими звездами, путешествуют по Вселенной, и если ее структура искривлена, это окажет влияние на движение фотонов, также как и на движение любого материального тела. Искривление траектории будет максимальным для тех лучей, которые проходят вблизи поверхности Солнца на своем пути к Земле. Такие лучи обычно полностью затмеваются светом Солнца, но во время солнечных затмений их можно увидеть.

Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению видимого

положения звезды. Это смещение может быть точно измерено путем сравнения видимого положения звезды по сравнению с ее истинным положением, известным по результатам ночных наблюдений звезды (в отсутствие отклоняющего влияния Солнца), полученным с интервалом примерно в полгода до или после затмения, когда Земля находится в соответствующем положении. В ноябре 1915 г. Эйнштейн, используя разработанную им новую теорию гравитации для расчета угла, на который должен отклониться луч света от звезды, прошедший рядом с поверхностью Солнца, получил значение 0,00049 градуса (1,75 угловых секунд, где одна угловая секунда равна 1/3 600 градуса). Этот крошечный угол равен углу раствора диафрагмы, сфокусированной на двадцатипятицентовой монетке в трех километрах от нее. Однако измерение столь малого угла было уже под силу технике тех дней. По просьбе сэра Фрэнка Дайсона, директора Гринвичской обсерватории, сэр Артур Эддингтон, известный астроном и секретарь Королевского астрономического общества Англии, организовал экспедицию на остров Принсипе, расположенный у западного побережья Африки, для проверки предсказания Эйнштейна в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г.

6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе — революционном пересмотре ранее существовавших понятий пространства и времени — вышла далеко за пределы научного сообщества, сделав Эйнштейна знаменитым во всем мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал:

«Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!».[25]

Это было звездным часом Эйнштейна.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика