Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Это говорит о том, что энергия колеблющейся струны зависит от двух вещей: от точного вида колебаний (более интенсивные колебания соответствуют более высокой энергии) и от натяжения струны (более сильное натяжение, опять же, соответствует более высокой энергии). На первый взгляд это описание может привести вас к мысли, что при переходе к более слабым колебаниям, с меньшей амплитудой и с меньшим числом максимумов и минимумов, струна будет обладать все меньшей энергией. Однако, как будет показано в главе 4 (в другом контексте), квантовая механика утверждает, что это рассуждение неверно. Согласно квантовой механике колебания струн, подобно всем другим колебаниям и волноподобным возмущениям, могут иметь только дискретные значения энергии. Грубо говоря, подобно компаньонам из ангара, у которых доверенные им деньги равны произведению целого числа на номинал денежных купюр, энергия, которую несет та или иная мода колебания струны, представляет собой произведение целого числа на минимальный энергетический номинал. Конкретней, этот минимальный энергетический номинал пропорционален натяжению струны (а также числу максимумов и минимумов конкретной моды колебаний), а целочисленный множитель определяется амплитудой моды колебаний.

Ключевым моментом здесь является следующее. Поскольку минимальный энергетический номинал пропорционален огромному натяжению струны, минимальная фундаментальная энергия также будет огромна по сравнению с обычными масштабами физики элементарных частиц. Она будет кратна величине, известной под названием планковская энергия. Чтобы дать представление об этой величине, скажем, что если мы пересчитаем планковскую энергию в массу, используя знаменитую формулу Эйнштейна Е

= тс2, полученное значение будет примерно в десять миллиардов миллиардов (1019) раз превышать массу протона. Эта чудовищная по стандартам физики элементарных частиц масса известна под названием планковской массы;
она примерно равна массе пылинки или массе колонии из миллиона средних по размерам бактерий. Итак, типичная эквивалентная масса колеблющейся петли в теории струн обычно равна произведению целого числа (1, 2, 3, и т.д.) на планковскую массу. Физики говорят, что в теории струн «естественной» или «характерной» шкалой энергий (или масс) является планковская шкала.

Здесь возникает важный вопрос, имеющий прямое отношение к задаче воспроизведения характеристик частиц в табл. 1.1 и 1.2. Если «естественная» энергетическая шкала теории струн примерно в десять миллиардов миллиардов раз превышает значения энергии и массы протона, как она может использоваться для намного более легких частиц — электронов, кварков, протонов и т. п., — образующих окружающий нас мир?

Ответ снова приходит из квантовой механики. Соотношение неопределенностей гарантирует, что не существует состояния абсолютного покоя. Все объекты испытывают квантовые флуктуации, поскольку в противном случае мы могли бы, в нарушение соотношения Гейзенберга, с абсолютной точностью узнать их местоположение и скорость. Это справедливо и для петель теории струн: независимо от того, насколько спокойной выглядит струна, она всегда в той или иной мере испытывает действие квантовых осцилляции. Замечательный факт, впервые установленный в 1970-х гг., состоит в том, что квантовые осцилляции и обычные колебания струны, которые обсуждались выше и были показаны на рис. 6.2

и 6.3, с энергетической точки зрения взаимно сокращают друг друга. Действительно, согласно квантовой механике энергия квантовых флуктуации струны является отрицательной
и уменьшает общую энергию колеблющейся струны на величину, примерно равную планковской энергии. Это означает, что струнные колебания с наинизшей энергией (которая, как мы наивно полагали, должна была равняться планковской энергии) в большинстве своем сокращаются, и в результате остаются колебания с относительной низкой суммарной энергией, массовый эквивалент которой близок к массам перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, переносящих взаимодействия. Следовательно, именно моды колебаний с наименьшей энергией обеспечивают контакт между теоретическим описанием струн и экспериментом в мире физики элементарных частиц. Например, Шерк и Шварц обнаружили, что мода колебаний, являющаяся кандидатом на роль гравитона, характеризуется полным сокращением энергии частицы, являющейся переносчиком гравитационного взаимодействия, приводя к нулевой массе. Это именно то, что ожидалось для гравитона: сила тяготения распространяется со скоростью света, и только частицы, не имеющие массы, могут двигаться с этой максимальной скоростью. Однако низкоэнергетические моды колебаний в гораздо большей степени являются исключением, чем правилом. Более типичное колебание фундаментальной струны соответствует частице, масса которой в миллиарды миллиардов раз превосходит массу протона.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика