Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Рис. 6.4.Персиковая косточка закреплена в тисках. Для создания её изображения используются только наблюдения за тем, как отскакивают предметы — «зонды», — брошенные в неё. Используя зонды всё меньшего размера — шарики (

а), пятимиллиметровые пульки ( б
), полумиллиметровые пульки ( в), можно получать всё более детальное изображение

Лучшее, что удалось изобразить Слиму, показано на рис. 6.4

а. Наблюдая за траекторией отскакивающих шариков, он смог установить, что размер косточки мал, и что она имеет твёрдую поверхность. Но это всё, что ему удалось узнать. Шарики были слишком велики, чтобы на них оказывали влияние более мелкие детали строения персиковой косточки. Когда Слим бросил взгляд на рисунок Джима (рис. 6.4 б
), он был поражён тем, что увидел. Однако быстрый взгляд на стрелялку Джима позволил ему понять, в чём дело: небольшие пульки, используемые Джимом, были достаточно малы, чтобы на угол, под которым они отражались, оказывали влияние некоторые крупные детали строения косточки. Таким образом, выстрелив в косточку большим количеством пятимиллиметровых пулек и наблюдая за их траекториями после отскока, Джим смог нарисовать более подробный рисунок. Чтобы не проиграть, Слим взял свою стрелялку, заполнил её снарядами ещё меньшего размера — полумиллиметровыми пульками, — которые так малы, что на характер их отражения будут оказывать влияние мельчайшие морщинки на поверхности косточки. Наблюдая за отскоком этих пулек, он смог нарисовать рисунок, который принёс ему победу (рис. 6.4 в).

Урок, который можно извлечь из этого маленького состязания, ясен: размер частиц-зондов не может существенно превышать размер изучаемых физических особенностей; в противном случае разрешающая способность исследования окажется недостаточной для изучения интересующих нас структур.

Те же самые выводы относятся, конечно, и к случаю, когда мы захотим провести более глубокое исследование персиковой косточки, чтобы определить её структуру на атомном и субатомном уровне. Полумиллиметровые пульки не дадут никакой полезной информации по этому вопросу; они явно слишком велики, чтобы исследовать структуру на атомном уровне. Именно по этой причине в ускорителях в качестве зондов используются протоны или электроны: маленький размер этих частиц делает их гораздо более подходящими для этой цели. На субатомном уровне, где на смену классической логике приходят квантовые понятия, наиболее подходящей мерой разрешающей способности частиц является квантовая длина волны, которая определяет диапазон неопределённости местонахождения частиц. Этот факт является следствием приведённого в главе 4 обсуждения соотношения неопределённостей Гейзенберга. Там мы установили, что минимальная погрешность при использовании в качестве зонда точечных частиц (мы говорили о фотонных зондах, но сказанное применимо и ко всем другим частицам) примерно равна квантовой длине волны частицы, используемой в качестве зонда. Грубо говоря, разрешающая способность точечной частицы размазывается в результате действия квантовых флуктуаций подобно тому, как точность скальпеля хирурга уменьшается, когда его руки дрожат. Вспомним, однако, что в главе 4 мы также отметили один важный факт, состоящий в том, что квантовая длина волны частицы обратно пропорциональна моменту количества движения, который, грубо говоря, определяется её энергией. Таким образом, увеличивая энергию точечной частицы, можно делать её квантовую длину волны всё меньше и меньше, квантовое размазывание будет всё более уменьшаться и, следовательно, мы сможем использовать эту частицу для изучения всё более тонких структур. Интуитивно понятно, что частицы высокой энергии имеют большую проникающую способность и могут использоваться для изучения более мелких деталей строения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже