Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Нетрудно понять причину существования минимальной массы. У намотанной струны есть ограничение на минимальную длину: это ограничение определяется длиной окружности циклического измерения и числом оборотов струны вокруг этого измерения. Минимальная длина струны определяет её минимальную массу. Чем больше эта длина, тем больше и масса, потому что при увеличении длины струна «растёт». Так как длина окружности пропорциональна радиусу, минимальные вклады топологической моды в массу струны пропорциональны радиусу окружности, на которую намотана струна. Учитывая соотношение Эйнштейна E = mc

2, связывающее массу и энергию, можно, кроме того, утверждать, что сосредоточенная в намотанной струне энергия пропорциональна радиусу циклического измерения. (У ненамотанных струн тоже есть очень малая минимальная длина, иначе это были бы не струны, а точечные частицы. Аналогичные аргументы могли бы привести к заключению, что и ненамотанные струны имеют хоть и малую, но всё же отличную от нуля массу. В определённом смысле это так, но квантово-механические поправки, рассмотренные в главе 6 (см. аналогию с телеигрой «Верная цена»), могут в точности сократить этот массовый вклад. Напомним, что именно так и происходит, когда в спектре ненамотанной струны возникают фотоны, гравитоны, а также другие безмассовые частицы или частицы с очень малой массой. Намотанные струны в этом отношении отличаются от ненамотанных.)

Каким образом существование топологических конфигураций струн влияет на геометрические

свойства измерения, вокруг которого наматываются струны? Ответ, который был дан в 1984 г. японскими физиками Кейджи Киккавой и Масами Ямасаки, весьма примечателен и очень нетривиален.

Посмотрим, что происходит на последних катастрофических этапах Большого сжатия вселенной Садового шланга. Когда радиус циклического измерения достигает планковской длины и, в духе общей теории относительности, продолжает стягиваться до меньших размеров, в этот момент, согласно теории струн, необходим радикальный пересмотр модели происходящего. В теории струн утверждается, что в случае, когда радиус циклического измерения становится меньше планковской длины и продолжает уменьшаться, все физические процессы во вселенной Садового шланга происходят идентично физическим процессам в случае, когда радиус циклического измерения больше планковской длины и увеличивается! Это означает, что когда радиус циклического измерения пытается преодолеть рубеж планковской длины в сторону меньших размеров, эти попытки предотвращаются теорией струн, которая в этот момент меняет правила геометрии на противоположные. Теория струн говорит о том, что такую эволюцию можно переформулировать, т. е. переосмыслить, сказав, что когда циклическое измерение стянется до планковской длины, затем оно начнёт расширяться. Законы геометрии на малых расстояниях переписываются в теории струн таким образом, что то, что ранее казалось полным космическим коллапсом, становится космическим расширением

. Циклическое измерение может сжаться до планковской длины. Однако благодаря топологическим модам все попытки дальнейшего сжатия в действительности приведут к расширению. Рассмотрим, почему это происходит.

Спектр состояний струны[36]

Возможность новых конфигураций намотанной струны означает, что у энергии струны во вселенной Садового шланга есть два

источника: колебательное движение и намотка (топологический вклад). Согласно Калуце и Клейну, каждый тип энергии зависит от геометрии шланга, т. е. радиуса свёрнутой циклической компоненты, но эта зависимость имеет ярко выраженный «струнный» характер, так как точечные частицы не могут наматываться вокруг измерений. Поэтому попытаемся сначала определить точную зависимость топологических и колебательных вкладов в энергию струны от размера циклического измерения. Для этого удобно разделить колебательные движения струны на две категории: однородные и обычные колебания. Обычные колебания неоднократно рассматривались выше (например, колебания, иллюстрация которых приведена на рис. 6.2). Однородные колебания соответствуют ещё более простому движению, а именно поступательному движению струны как целого, когда она скользит из одного положения в другое без изменения формы. Все движения струны являются суперпозициями поступательных движений и осцилляций, т. е. суперпозициями однородных и обычных колебаний, однако сейчас нам удобнее рассматривать такое разделение движений струны. На самом деле обычные колебания играют второстепенную роль в наших рассуждениях, и поэтому их вклады будут учтены лишь после изложения сути наших доводов.

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука