Оптоизоляторы напоминают микросхемы: содержат светодиод и фототранзистор, расположенные друг напротив друга. При включении светодиода активируется фототранзистор, который используется как переключатель. Оптоизоляторы также не используются с высокими токами. Они высоко ценятся в тех случаях, когда необходимо электрически разделить две цепи; так как между светодиодом и фототранзистором нет соединений или электрического контакта. Таким образом, существует полное разделение, что предотвращает электромагнитные помехи или нежелательный шум, поступающий от одной цепи к другой.
Для включения оптоизолятора необходимо подать светодиоду правильное напряжение и ток, подключив сопротивление от 0,5 до 1 кОм и при напряжении 5 В.
Рис. 2.42.
4N35 – это распространенный оптоизолятор: его символ и пример использованияЭлектродвигатель
Электродвигатели преобразуют электрическую энергию в механическую. Эти устройства содержат в себе магниты и электромагниты и для своей работы требуют тока определенной мощности. Простейшая модель двигателя – это двигатель постоянного тока (ДПТ), ранее он был широко распространен в кассетных магнитофонах или видеомагнитофонах, сейчас вы можете встретить его в моделировании. Внутри у него есть два элемента: статор и ротор. Подвижная часть, ротор, представляет собой электромагнит. Статор является постоянным магнитом, соединенным с корпусом двигателя. Принцип работы аналогичен принципу действия магнитов, которые притягиваются или отталкиваются в зависимости от их ориентации. Система щеток поддерживает контакт с ротором, таким образом, чтобы он всегда в контрасте со статором, таким образом, между ними присутствует сила отталкивания: именно это заставляет двигатель вращаться. Щетки касаются контактов, которые намагничивают ротор с переменной поляризацией. С помощью этого гениального механизма двигатель питается от постоянного тока.
Щетки, скользящие на контактах ротора, могут создавать искры и электромагнитные помехи. Чтобы избежать этих помех, можно использовать бесщеточные двигатели, где нет «скользящих» контактов, а ряд электромагнитов окружают ротор. Магниты срабатывают последовательно и таким образом вращают двигатель. Эти устройства питаются с помощью двух простых проводов.
Для регулирования скорости двигателей постоянного тока мы не можем просто изменить подаваемые напряжение и ток: для функционирования двигатель требует очень точного напряжения и тока. Корректировка осуществляется путем подачи сигнала ШИМ, который несколько раз в секунду включает и выключает двигатель, достигая желаемой скорости.
Запуск электродвигателей может быть реализован с помощью простого транзистора или с использованием специальных схем, называемых драйверами, которые позволяют регулировать скорость и изменять направление вращения. Драйверы сделаны из группы транзисторов или из специальных интегральных схем. Они запускаются от сигналов с низким токоми располагаются отдельно от цепей с большими токами, необходимыми для запуска двигателя.
Рис. 2.43.
Двигатель постоянного тока, шаговый двигатель и их электрические символыВ шаговых двигателях ротор не вращается свободно, но выполняет один шаг за раз. Внутри они имеют ряд электромагнитов, соединенных между собой. Чтобы повернуть вал двигателя, мы должны в правильной последовательности подать питание к группам электромагнитов. Эти двигатели легко различимы, так как они имеют 4, 6 или 8 питающих проводов. Для их запуска предпочтительно использовать управляющую схему (драйвер), который включает электромагниты. Шаговые двигатели широко используются в робототехнике и автоматизации производства, так как они очень точные: минимальный шаг вращения может составлять доли градуса!
Серводвигатели
Серводвигатель, или сервопривод (используется в станках с числовым программным управлением), представляет собой коробку, снабженную вращающимся зубчатым штифтом. Вращение не полное, но доходит до максимум 180° / 270° в зависимости от модели. Сервоприводы могут достичь заданной позиции и поддерживать ее.
Внутри серводвигателя находятся:
• двигатель постоянного тока;
• потенциометр – используется для определения положения двигателя;
• группа зубчатых колес – для подключения потенциометра и двигателя и для увеличения «механической мощности» устройства;
• небольшая контролирующая цепь – принимает контрольный сигнал, запускает двигатель и определяет его положение путем считывания потенциометра.
От серводвигателя выходят три провода: красный и черный используются для питания, третий провод (желтый или оранжевый) используется для контрольного сигнала.
Эти устройства способны развивать значительные мощности. Сервопривод с крутящим моментом 2 кгс · м способен поднять груз массой 2 кг, который штифтом прикреплен к стержню длиной 1 м. Если мы уменьшаем длину стержня до половины метра, мы сможем поднять четыре килограмма при 50 см.
Рис. 2.44.
Серводвигатель и его электрический символ