Преобразователь десятичных значений в двоичные имеет десяток входов, которые могут быть активированы по одному за раз, а также определенное число выходных проводов. Каждый вход соответствует выходному двоичному числу. С десятью входами мы будем иметь четыре провода, потому что нам понадобиться считать с нуля (0000) до девяти (1001) в двоичной системе. Если ни один из входных сигналов не находится в высоком уровне, то выход будет равен серии нулей. Активировав вход, выход «включит» соответствующее двоичное число.
Таблица 8.7.
Таблица истинности идеального преобразователя десятичных значений в двоичныеМикросхема 74LS147 представляет собой декодер с десятью входами и четырьмя двоичными (бинарными) выходами. Эта интегральная схема изготовлена по технологии ТТЛ, ее уровни работают в обратном направлении. Для получения 0000 мы устанавливаем все входы на «1», кроме первого, который установлен на «0». Кроме того, входы обладают приоритетным свойством: если бы несколько входов одновременно находились в высоком уровне, то рассматривался бы только вход с большим значением; если довести до низкого уровня выход 7 и выход 2, последний будет проигнорирован. В таблицах истинности, те входы, которые могут принимать любое значение, обозначаются буквой X.
Рис. 8.15.
Символ декодера 74LS147 на электрической схемеТаблица 8.8.
Таблица истинности декодера 74LS147Если бы понадобилось большее количество входов, нам пришлось бы искать такой компонент на сайте какого-нибудь интернет-магазина. Можно найти чипы с шестнадцатью входными линиями, которые затем преобразуются в четыре выходных бита.
Особый тип кодера используется для управления дисплеем из семи сегментов: они имеют четыре входных линий и семь линий вывода, которые подключаются к семи сегментам дисплея. Микросхема формирует сигналы, необходимые для включения числа, соответствующего битам на входе. Если на входе установить «ООП», на дисплее с семью сегментами мы прочитаем число «3». Чипом такого типа является, например, 74LS47, который подключается напрямую к светодиодному дисплею с помощью сопротивлений на 330 Ом.
Рис. 8.16.
Электрическая схема подключения 74LS47 к дисплею с семью сегментамиЭти схемы могут быть использованы только в одном направлении: будет невозможным подать сигналы на выходы и надеяться, что они дойдут до входов. Помните: цифровые микросхемы всегда работают «в одну сторону»!
Логические переключатели, мультиплексоры и демультиплексоры
В первых главах мы уже видели, как работает поворотный переключатель: он имеет вал, который можно вращать, соединяя центральный разъемс серией контактов, расположенных по окружности. Сигнал, который поступает на центральный разъем, может быть отведен к одному из выходных контактов. Мы можем совершать ту же операцию с цифровыми интегральными схемами: с помощью некоторых выбранных разъемов решаем, как сортировать сигналы. Мультиплексор, или MUX, имеет множество цифровых входов, которые могут быть подключены к выходной линии. Демультиплексор, или DEMUX, принимает сигнал на входе, который может быть направлен к одному из доступных выходов.
Интегральная схема 74НС151 (или 74LS151) представляет собой мультиплексор с 8 входами, 1 выходом и 3 выводами для выбора входного канала.
Рис. 8.17.
Символ микросхемы 74НС151 с таблицей состоянийИнтегральная схема 74НС138 (или 74LS138) представляет собой демультиплексор с 1 входом, 8 выходами и 3 выводами для выбора линейного выхода.
Мультиплексор и демультиплексор не могут быть использованы в двух направлениях. Очень полезный чип, являющийся исключением из этого правила, это чип 4066В, который содержит 4 контакта с цифровым управлением. Эти контакты являются настоящими переключателями, которые могут бытьиспользованы для управления аналоговыми сигналами. Выводы его выключателей не имеют полярности и могут быть использованы в одном или другом направлении. Каждый выключатель управляется с помощью цифрового сигнала: «О» для открытия контакта и «1» для закрытия.
Рис. 8.18.
Символ микросхемы 74НС138 с таблицей состоянийРис. 8.19.
Цоколевка чипа 4066ВСхемы последовательного действия
Существует тип цифровых схем, которые для работы требуют синхронизирующий сигнал, также называемый тактовым. Информация в этих системах обрабатывается в точные моменты, отмеченные по тактам; по этой причинеони называются последовательными. Если в схемах последовательного действия подать сигнал на вход, мы увидим изменение выходного сигнала только после одного или более тактовых импульсов. Этот тип схем позволяет хранить информацию в течение долгого времени.
Тактовые генераторы