int main(void)
{
DDRB |= (1 << PB0); /* конфигурирую PIN0 в качестве выхода */
while(1) {
PORTB &= ~(1 << PB0); /* зажигаю светодиод */
_delay_ms(1000);
PORTB |= (1 << PB0); /* гашу светодиод */
_delay_ms(1000);
}
return 0;
}
Сохраняем текст в файл с именем main.c. Для компиляции исходного кода, вы должны использовать AVR-GCC и APH-objcopy. В результате компиляции создается файл hello.hex, который в этом случае может быть намного меньше, чем аналогичный файл, созданный в IDE «Ардуино».
avr-gcc – DF _CPU=8000000UL – mmcu=attiny85 – Os – о hello.out
hello.с avr-objcopy – O ihex – R.eeprom hello.out hello.hex
Программирование ATtiny осуществляется с помощью команды avrdude, указывается тип чипа (Т85 означает ATtiny85), программатор (usbasp) и файл для передачи (hello.hex).
avrdude – р t85 – с usbasp – Р usb – е -U flash: w: hello.hex
Глава 10
От прототипа к готовому продукту
В этой главе мы рассмотрим, как превратить наш прототип на макетной плате в профессиональную печатную плату. Мы научимся проектировать печатные платы при помощи программ gEDA и Fritzing.
В предыдущих главах мы научились собирать прототипы на макетных платах с помощью проводов и паять их (на макетную плату Stripboard) для более длительного хранения. Создание прототипов с платой Stripboard и паяльником является довольно длительной операцией: необходимо изучить расположение компонентов, припаять их, а также расположить все провода в нужном порядке, один за другим. В конце концов в нашей творческой деятельности нам потребуется произвести ряд электронных плат, или придать более профессиональный вид нашему новому творению. Сегодня очень легко производить печатные платы (
Печатные платы
Во времена термоэлектронных ламп электронные сборки осуществлялись с помощью специальных решеток, снабженных контактами, к которым прикреплялись и спаивались провода и компоненты. Процесс сборки не был механизирован, потому что для этого не хватало технологий, и работа была полностью ручной.
Рис. 10.1.
Внутренняя часть лампового радио с электропроводкойВскоре после 1950 года начали распространяться печатные платы, то есть площадки из изоляционного материала, снабженные электрическими соединениями и отверстиями для крепления электронных компонентов, которые припаиваются к контактам паяльником с помощью олова. Этот тип электронной сборки называется «монтаж в отверстия» (Through Hole Technology, ТНТ). С распространением печатных плат были сокращены сроки производства и число ошибок при сборке. Со временем эта технология была усовершенствована и сделала возможной изготовление плат, сформированных из нескольких слоев. Сегодня можно встретить более распространенную модель с 8 слоями, но возможно и создание плат с 20 слоями. Примерно с 1970 года начали появляться печатные платы по технологии поверхностного монтажа (Surface Mounting Technology, SMT), которые значительно уменьшили время производства, потому что больше нет необходимости дырявить площадки, так как компоненты могут быть просто приложены к плате и припаяны к поверхностным контактам, которые также называются контактными площадками. Монтаж на поверхность может быть автоматизирован.
В цепи, образованной из нескольких слоев, контакты между уровнями реализуются с помощью отверстий, называемых «переходными» и покрытых металлическим материалом. Электрические соединения выполнены при помощи тонкой медной фольги посредством химической или механической гравировки, образуя таким образом печатные проводники и контактные площадки вокруг отверстий.
Рис. 10.2.
Контактные площадки, печатные проводники и одно переходное отверстиеПечатные платы создаются с использованием программ САПР под названием САЕ (Computer Aided Electronic), которые помогают разработчикам в создании электрической схемы и изготовлении печатной платы, проектируя физическое расположение элементов и формы печатных проводников. Эти программы имеют библиотеку электронных компонентов, содержащую механические размеры и расположение контактов каждого элемента.