Ещё три десятка лет назад даже немногие химики могли рассказать что-то интересное про иттрий. Глядя на Периодическую систему, можно было сказать, что иттрий находится в побочной подгруппе третьей группы между скандием и лантаном. Кто-то мог вспомнить, что иттрий наряду с иттербием, эрбием и тербием назван в честь небольшого шведского города Иттербю, в окрестностях которого была обнаружена руда иттербит (помимо прочего из неё выделили скандий, о чем речь шла выше).
Кто-то мог припомнить историю открытия иттрия – то, как финский химик Юхан Гадолин выделил из иттербита оксид элемента, который, как показал позже Карл Мосандер, являлся смесью оксидов иттрия, эрбия и тербия. Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, впервые был получен в 1828 году Фридрихом Велером. Близость свойств и истекающая из этого сложность разделения редкоземельных элементов и была причиной того, что долгое время эти элементы практически не привлекали внимания учёных.
Ситуация изменилась в 1986 году, когда работавшие в IBM Георг Бердноц и Карл Мюллер обнаружили, что оксид лантана-бария-меди (La5−x
Cu5O5(3−y)) становится сверхпроводимым при рекордно высокой температуре – 35 Кельвинах (В 1987 году Мо-Куен Ву и Пол Чу, объединив усилия своих исследовательских групп из Университетов Алабамы и Хьюстона, выяснили, что оксид иттрия-бария-меди (YBa2
Cu3O7, часто его упоминают просто как YBCO) становится сверхпроводимым ещё при более высокой температуре – 95 Кельвинах (–178 °C) (С общежитейской точки зрения и –238 °C, и –178 °C сложно назвать высокими температурами, однако открытие Ву и Чу означало, что для поддержания сверхпроводящего состояния YBCO достаточно охлаждать его жидким азотом, в то время, как для перевода оксида лантана-бария-меди в сверхпроводящее состояние нужно было охлаждать его более дорогим жидкими гелием. Конечно, главная цель всех исследователей, занимающихся поиском сверхпроводящих материалов – вещество, которое сохраняло бы сверхпроводящее состояние хотя бы при комнатной температуре, но пока эта цель недостижима.
Применение YBCO могло бы значительно удешевить ряд современных технологий, основанных на применении сверхпроводимых материалов, например, магниты МРТ можно было бы охлаждать жидким азотом, что понизило бы расходы на эксплуатацию этих аппаратов, но внедрению этого соединения иттрия в повседневные технологии препятствует ряд причин. Во-первых, для того, чтобы потерять электрическое сопротивление при 95 K, в YBCO должно приходиться чуть меньше семи молей атомов кислорода на один моль атомов иттрия, а такое соотношение не так просто достичь. Во-вторых, YBCO жёсткий и хрупкий, а для практического применения было бы желательно его применение в виде гибких плёнок или эластичных проводов Исследователи пытаются разработать сверхпроводящие гибкие и эластичные композиты, содержащие YBCO, но пока значительных успехов в этой области не достигнуто.
Другая область применения иттрия – синтетические минералы, наиболее известным из которых является иттрий-алюминиевый гранат (Y3
Al5O12, YAG;