Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Риман сразу же понял, что его гипотеза может объяснить причину, по которой результат Гаусса с функцией Li(N) оказался таким точным. Позже было доказано, что гипотеза Римана эквивалентна первой гипотезе о простых числах Гаусса.

Перфекционизм, которым страдал Риман в период своего обучения, чуть не помешал ему записать свои открытия. Без сомнения, так сказывалось влияние Гаусса, который настаивал на том, что публиковать следует только идеальные доказательства, абсолютно лишенные пробелов. В ноябре 1859 года Риман опубликовал в ежемесячных заметках Берлинской академии эссе о своих открытиях. Этим десяти страницам плотных математических рассуждений было суждено быть единственными, которые Риман опубликовал по вопросу простых чисел, и несмотря на это они оказали значительное влияние на восприятие данных чисел в будущем. И все же, несмотря на блестящую интуицию Римана, эссе не было оценено. Вслед за своим учителем, Гауссом, Риман уничтожил все «леса». Главный тезис эссе состоял в том, что функция L.(N) Гаусса будет предоставлять каждый раз все лучшее приближение к функции по мере нашего продвижения в расчетах. Хотя Риман предложил инструмент доказательства гипотезы Гаусса, решение осталось вне досягаемости. Впрочем, Риман ввел форму, с помощью которой в будущем оказалось возможным подступиться к проблеме. Доказательство гипотезы Римана сразу же захватило математиков.


Если бы я проснулся, проспав тысячу лет, моим первым вопросом было бы: доказали ли уже гипотезу Римана?

Давид Гильберт, математик, предложивший в 1900 году знаменитый список ИЗ 23 НЕРЕШЕННЫХ ПРОБЛЕМ


В 1890 году по предложению Шарля Эрмита (1822-1901), одного из главных французских знатоков теории чисел, Парижская академия учредила премию — Grand Prix des Sciences Mathematiques — за доказательство первой гипотезы Гаусса о простых числах. Работу по этой теме представил ученик Эрмита, Жак-Саломон Адамар (1865-1963). Хотя он не предложил полного доказательства, его идей было достаточно для того, чтобы стать лауреатом премии. В 1896 году Адамару удалось заполнить лакуны своего первого доказательства, и ему не нужно было опираться на гипотезу Римана о том, что у нетривиальных нулей действительная часть равна одной второй. Адамару достаточно было доказать, что ни у одного нетривиального нуля нет действительной части, большей единицы, и он смог это сделать.

Спустя век после того, как Гаусс открыл связь между простыми числами и логарифмической функцией, наконец появилось доказательство гипотезы Гаусса о простых числах. Поскольку речь шла уже не о гипотезе, с этого момента она стала называться теоремой Гаусса о простых числах. Безусловно, Адамар не смог бы достичь успеха в своей работе без вклада Римана. Адамару пришлось разделить славу с бельгийским математиком Шарлем ла Валле Пуссеном (1866-1962), который в том же году нашел другое доказательство того же результата.

Следовательно, теперь оставалось только доказать или опровергнуть вторую гипотезу Гаусса о простых числах. Но если доказательство гипотезы Гаусса было подвигом, то попытка оспорить его догадку требовала уже поистине нечеловеческих усилий. Однако Джон Идензор Литлвуд (1885-1977), английский математик первой половины XX века, взялся за работу. Литлвуд был выдающимся учеником Годфри Харолда Харди (1877-1947), он получил известность благодаря работам по теории чисел, неравенств и теории функций. В 1912 году Литлвуд открыл, что гипотеза Гаусса — это мираж, что существуют области, где истинное количество простых чисел недооценено. Он осуществил доказательство с помощью математических рассуждений, поскольку нет способа наглядно аргументировать, что Гаусс ошибся. И на самом деле до сегодняшнего дня никому не удалось дойти до области чисел, в которой гипотеза Гаусса оказалась бы ложной. Несколькими годами позже, в 1933 году, студент Литлвуда по имени Стенли Скьюз (1899-1988) установил, что только когда обнаружатся простые числа порядка 10101034, мы столкнемся с недооценкой количества простых чисел со стороны интегрального логарифма Гаусса. Но речь идет о настолько огромном числе, что мы должны проявить снисхождение к неточности, допущенной великим мастером.

ГЛАВА 5

Вклад в геометрию и физику

Гаусса с юности привлекала геометрия. Необычайная изобретательность привела его к поиску альтернатив евклидовой геометрии, которая в его время считалась единственно возможной. Также ученый внес большой вклад в дифференциальную и прикладную геометрию, особенно в геодезию. В области физики он сотрудничал с такими известными фигурами, как Вебер и Гумбольдт, и оставил свой след в таких разделах, как магнетизм и динамика.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг