Теперь определим вероятность того, что интересующее нас событие не
произойдёт. В примере с урной мы хотим знать вероятность того, что вынутый шар не будет красным. Очевидно, что здесь мы имеет дело с двумя несовместимыми событиями: шар будет либо красным, либо не красным. Вероятность первого события равна 0,2, а вероятность второго 0,5 + 0,3 = 0,8. Значит, с вероятностью 0,8 мы вынем из урны не красный шар. Обратим внимание на то, что сумма вероятностей всех возможных несовместимых событий равна 1. Это вполне очевидно, так как ясно, что какое-нибудь событие из всего набора возможных произойдёт наверняка. Этот факт достоверен, а потому его вероятность равна 1. Но вероятность того, что какое-нибудь из всех возможных событий произойдёт, равна сумме их вероятностей и, следовательно, эта сумма вероятностей равна 1. Отсюда следует, что вероятность того, что какое-то событие не наступит, равна 1 минус вероятность того, что оно наступит, потому что либо то, либо другое произойдёт наверняка:Для того чтобы всё это лучше понять, решим простую задачу. Через остановку проходят автобусы трёх маршрутов. Известно, что по первому маршруту курсирует 15 автобусов, по второму – 20, а по третьему – 25. Вам нужен автобус второго маршрута. Какова вероятность того, что первый пришедший автобус вас не устроит?
Для того чтобы облегчить решение, прибегнем к аналогии с задачей о шарах в урне. Условия нашей задачи равносильны тем, когда в урне находится 15 белых шаров, 20 чёрных и 25 красных. Итого 60 шаров. Какова вероятность того, что первым будет вынут не чёрный шар? Вероятность вынуть белый шар (первый маршрут) равна
1.
От чего зависит точность определения эмпирической вероятности благоприятного события?2.
Чему равна вероятность каждого из равновероятных событий, если общее число таких событий равно N?3.
Какие события называются несовместимыми? Какова вероятность того, что наступит хотя бы одно из двух несовместимых событий, вероятности которых равны P и Q? Чему равна вероятность того, что событие с вероятностью Р не наступит?1.
Подберите эпиграф к данному параграфу.2.
В урне находится 4 белых, 6 чёрных и 2 красных шара. Определите вероятность того, что:• вынутый шар будет чёрным;
• вынутый шар будет чёрным или зелёным;
• вынутый шар не будет зелёным.
3.
Обсудите в классе, какова взаимосвязь между понятиями «вероятность» и «риск».4.
Вспомните примеры из истории или литературных произведений, где участник (герой), оценивая вероятность наступления определённых событий, принимает решение и оказывается в выигрыше.§ 73 Условная вероятность и случайные процессы