Еще один подобный пример дает эволюция языков, которую тоже можно изучать и реконструировать филогенетическим методом. Как известно, живые и мертвые языки классифицируют, разделяя их на ветви, семьи, группы, подгруппы, совершенно так же, как Линней разделил все виды животных на классы, отряды и роды. В лингвистической классификации тоже используется принцип (хотя и не абсолютный), что степень сходства между языками, например в лексике или грамматике, является отражением степени их родства. Особенно хорошо это видно на примере слов, принадлежащих базовой лексике и обозначающих привычные объекты повседневного опыта, — тех слов, которые должны были возникнуть в каждом языке очень давно, еще в дописьменную эпоху.
Сделаем элементарное (и, я подозреваю, довольно наивное в глазах лингвиста) упражнение в сравнительном языкознании. Составим таблицу и выпишем в нее из разных языков слова, которым соответствует одно и то же понятие (табл. 3.1). Хорошо видно, что чем ближе языки, тем более похоже пишутся и произносятся в них слова, означающие одно и то же. В наивысшей степени сходны языки, входящие в одну языковую группу (русский и польский, французский и итальянский). У языков, относящихся к разным группам одной языковой семьи, например индоевропейской, сходства меньше, хотя оно тоже прослеживается (посмотрите, как похожи во всех представленных в таблице индоевропейских языках слова, обозначающие сестру и солнце). Самый своеобразный из включенных в таблицу языков — венгерский, и немудрено. Он не относится к числу индоевропейских и принадлежит совсем другой языковой семье, уральской. Вот почему так сложно узнать в венгерском слове «lánytestvér» наше слово «сестра» (или польское «siostra»), а в слове «nap» — «солнце»[63]
. Заметьте, что даже очень молодое книжное слово «филогенез», разлетевшееся со страниц сочинений Геккеля по всем европейским странам, в венгерском тоже представлено ни на что не похожим эквивалентом (хотя слово «filogenezis» носителям этого языка тоже понятно).Статистическое сравнение генетических текстов, содержащихся в клетках разных организмов, — это очень мощное средство для установления их родственных отношений. Совершенно незаменимым оно становится, если нам нужно реконструировать генеалогию групп животных, не представленных в палеонтологической летописи. В этом случае можно — хотя бы теоретически — сравнивая расшифрованные последовательности генов современных видов, реконструировать их родственные отношения между собой и приблизительно определить степень родства. В наши дни полным ходом идут работы по расшифровке нуклеотидных последовательностей «древней ДНК», извлеченной из остатков вымерших видов, живших сравнительно недавно (так, были успешно прочтены геномы неандертальца и денисовского человека). Конечно, расшифровать очень древнюю ДНК (например, тех же динозавров, на что надеются поклонники научной фантастики) вряд ли возможно, так как есть пределы сохранности молекул при фоссилизации. Но и то, что уже достигнуто в этом направлении, особенно в области реконструкции эволюционной истории
С помощью молекулярного анализа «скрытое» родство, о котором порой трудно догадаться, изучая анатомическое строение, выявляется едва ли не более эффективно, чем при анализе онтогенетическом. Внешняя похожесть, и нам придется об этом еще не раз говорить, может быть очень обманчивой. Адаптируясь к сходным условиям существования, даже не очень близкородственные организмы могут приобретать схожий облик (опять воскрешаем в памяти картинки из школьного учебника, иллюстрирующие это явление, которое называется