В создании физической теории существеннейшую роль играют фундаментальные идеи. Физические книги полны сложных математических формул. Но началом каждой физической теории являются мысли и идеи, а не формулы. Идеи должны позднее принять математическую форму количественной теории, сделать возможным сравнение с экспериментом. Это можно объяснить на примере той проблемы, с которой мы теперь имеем дело. Главная догадка состоит в том, что равномерно движущийся электрон будет вести себя в некоторых явлениях аналогично волне. Предположим, что электрон или поток электронов — при условии, что все они имеют одинаковую скорость, — движется равномерно. Масса, заряд и скорость каждого индивидуального электрона известны. Если мы хотим каким-нибудь образом связать понятие волны с равномерно движущимся электроном или электронами, то мы должны поставить следующий вопрос: какова длина волны? Это вопрос количественный, и, чтобы получить на него ответ, следует построить более или менее количественную теорию. Правда, это оказалось простым делом. Математическая простота работы де Бройля, дающей ответ на этот вопрос, чрезвычайно удивительна. В то время, когда была написана его работа, математический аппарат других физических теорий был сравнительно утончённым и сложным. Математические операции в задаче, касающейся волн вещества, чрезвычайно просты и элементарны, но её фундаментальные идеи простираются глубоко и далеко.
Раньше, в случае световых волн и фотонов, было показано, что каждое положение, сформулированное на волновом языке, можно перевести на язык фотонов, или световых корпускул. То же самое справедливо и для электронных волн. Корпускулярный язык для равномерно движущихся электронов уже известен. Но каждое положение, выраженное корпускулярным языком, можно перевести на волновой язык, как это и было в случае фотонов. Две идеи привели к формулировке правил перевода. Одна идея — это аналогия между световыми волнами и электронными, или между фотонами и электронами. Мы применяем один и тот же метод перевода как для вещества, так и для света. Другую идею даёт специальная теория относительности. Законы природы должны быть инвариантными относительно лоренцевых преобразований, а не классических. Обе эти идеи приводят к определению длины волны, соответствующей движущемуся электрону. Из теории следует, что электрон, движущийся, скажем, со скоростью 16000 км/с, имеет длину волны, которую легко можно подсчитать и которая, оказывается, лежит в той же области, что и длина волны рентгеновских лучей. Отсюда мы заключаем далее, что если можно обнаружить волновой характер вещества, то это можно сделать экспериментально таким же путём, каким обнаруживаются волновые свойства рентгеновских лучей.
Вообразим пучок электронов, движущихся равномерно с заданной скоростью, или, если употреблять волновую терминологию, однородную электронную волну и предположим, что она падает на очень тонкий кристалл, играющий роль дифракционной решётки.
Расстояния между дифрагирующими элементами в кристалле настолько малы, что может происходить дифракция рентгеновских лучей. Можно ожидать аналогичного эффекта и для электронных волн, имеющих длину волны того же порядка. Фотографическая пластинка должна зарегистрировать эту дифракцию электронных волн, проходящих через тонкий слой кристалла. Эксперимент и в самом деле обнаруживает явление дифракции электронных волн, что, несомненно, является большим достижением теории. Подобие между дифракцией электронных волн и дифракцией рентгеновских лучей особенно заметно из сравнения их фотографий (см. рис. 80 и 85).
Рис. 85. Дифракция электронных волн (Фотография Лориа и Клингера)
Мы знаем, что такая картина позволяет нам определить длину волны рентгеновских лучей. Это остаётся в силе и для электронных волн. Дифракционная картина даёт длину этих волн, а полное количественное согласие теории и эксперимента блестяще подтверждает правильность наших рассуждений.
Эти результаты расширили и углубили наши прежние трудности. Это можно уяснить с помощью примера, аналогичного тому, что использован для световой волны. Электронный снаряд при очень малом отверстии будет отклоняться подобно световой волне. На фотографической пластинке обнаруживаются светлые и тёмные кольца. Есть некоторая надежда объяснить эти явления взаимодействием между электроном и краем отверстия, хотя такое объяснение не кажется очень многообещающим. Но что происходит в случае двух отверстий? Вместо колец появляются полосы. Почему же присутствие второго отверстия полностью изменяет эффект? Электрон неделим и может, казалось бы, пройти лишь через одно из двух отверстий. Как мог электрон, проходя через отверстие, знать, что на некотором расстоянии находится другое отверстие?