Читаем Эволюция и прогресс полностью

Мы уже отмечали, что живое вещество можно рассматривать как катализатор, «пытающийся» ускорить собственное воспроизведение. При этом совокупное действие всех генов генома направлено на увеличение биомассы вида. Однако как быть с отдельными индивидами? Не станем же мы утверждать, что активность всех генов направлена на увеличение массы особи? Ответ здесь, казалось бы, должен быть отрицательным, но не станем спешить.

Обычно особи многоклеточных организмов диплоидны, т. е. каждая хромосома их соматических клеток представлена двумя вариантами (гомологами), хотя для многих видов растений (да и некоторых животных) можно искусственным путем получить ряды форм с измененным числом гомологов. У гаплоидов это число равно одному, у триплоидов — трем, тетраплоидов — четырем и т. д. Оказалось, что триплоиды и тетраплоиды, как правило, крупнее (мощнее) диплоидов, а последние мощнее гаплоидов. Этот эффект обусловлен прежде всего соответствующим увеличением объема клеток всех типов. Таким образом, суммарный эффект генов направлен на прирост вещества цитоплазмы клеток.

Еще в 1908 г. Р. Гертвиг установил «закон» ядерно-плазменного отношения, гласящий, что чем больше объем ядра, тем больше объем цитоплазмы. Но объем клеточного ядра в разных тканях одного организма определяется степенью деконденсации хроматина, которая прямо связана с активностью генов. Таким образом, этот «закон» также указывает на то, что суммарный эффект работы всех генов направлен на увеличение клеточной массы.

Большинство мутаций с качественным эффектом на фенотип ведет к уменьшению размеров какой-либо морфологической структуры или всей массы тела особи. Примерно так же влияют и микроделеции, связанные с утратой гена. Увеличение размеров структур в результате серьезного повреждения гена наблюдается гораздо реже. У многих генетически изученных объектов известен ряд локусов, потеря или серьезное повреждение которых ведет к ступенчатой редукции одной и той же структуры. Например, у гороха известна большая серия подобных генов, определяющих массу семян.

В качестве меры развития структуры следовало бы выбрать ее вклад в реализацию основных функций организма. Однако непонятно, как этот вклад измерить; гораздо проще в качестве искомой меры взять относительную величину структуры, т. е. отношение ее размера к размеру всего тела, олицетворяющего собой мощность всех функций организма.

Как мы убедились выше (см. гл.2), сложность структуры коррелирует с ее мощностью. Многочисленные складки, карманы, выпячивания обеспечивают увеличение площади функционально активных поверхностей. Естественно, каждая складка появляется в определенном месте и в определенное время и является следствием «срабатывания» конкретного гена (или группы генов). Разнообразие клеточных элементов тоже коррелирует с генетической сложностью программы развития структуры. В итоге, возникает простая логическая цепь: чем больше генов контролирует развитие структуры, тем выше ее морфологическая сложность, чем выше эта сложность, тем больше ее относительные размеры и мощность.

Все органы обладают рациональным строением, т. е. развивают максимальную мощность при минимальных энергетических затратах. Этот принцип симморфоза объясняет многократное возникновение в разных эволюционных стволах практически идентичных (в морфологическом отношении) структур, построенных как бы по одному плану. Поразительно, что тот же «план» довольно часто можно обнаружить и в конструкциях машин, созданных инженерной мыслью людей. Единственное разумное объяснение такой двойной конвергенции заключается в ограниченности спектра решений, обеспечивающих рабочую структуру максимальной мощностью при минимуме энергетических затрат.

Рассмотрим такую техническую задачу, как идентификация объекта на расстоянии. Важность ее для организмов очевидна. Внешний предмет может быть и хищником, и жертвой, и особью противоположного пола, и совершенно нейтральным объектом. Если на него падает свет, то есть одно универсальное решение — зарегистрировать особенности отражения лучей от отдельных частей объекта. Очевидно, что для этого необходимо иметь светочувствительную структуру и устройство, направляющее на него отраженный свет. Всем этим снабжены многие оптические приборы, например фотокамера.

Создавая такие приборы, человек руководствуется законами геометрической оптики и свойствами доступных ему материалов. В качестве светочувствительной структуры он использует фотоэмульсию, и фокусирует на нее лучи с помощью преломляющих свет прозрачных тел — прежде всего линз. Для получения четкого изображения объекта на фотоэмульсии мы должны уметь изменять или величину зазора между нею и линзой, или фокусное расстояние последней. Кроме того, мощность светового потока также нужно плавно регулировать, для чего оптические приборы снабжаются диафрагмой.

Перейти на страницу:

Все книги серии Человек и окружающая среда

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное